首页 | 本学科首页   官方微博 | 高级检索  
     


Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposomes
Authors:Kenji Fukuzawa  Yasuki Inokami  Akira Tokumura  Junji Terao  Asahi Suzuki
Affiliation:(1) Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan;(2) Department of Nutrition, School of Medicine, Tokushima University, Tokushima, Japan;(3) Department of Chemical Science and Technology, Tokushima University, Tokushima, Japan
Abstract:The 1O2 quenching rate constants (k Q ) of α-tocopherol (α-Toc) and carotenoids such as β-carotene, astaxanthin, canthaxanthin, and lycopene in liposomes were determined in light of the localization of their active sites in membranes and the micropolarity of the membrane regions, and compared with those in ethanol solution. The activities of α-Toc and carotenoids in inhibiting 1O2-dependent lipid peroxidation (reciprocal of the concentration required for 50% inhibition of lipid peroxidation: IC50]−1) were also measured in liposomes and ethanol solution and compared with their k Q values. The k Q and IC50]−1 values were also compared in two photosensitizing systems containing Rose bengal (RB) and pyrenedodecanoic acid (PDA), respectively, which generate 1O2 at different sites in membranes. The k Q values of α-Toc were 2.9×108M−1s−1 in ethanol solution and 1.4×107 M−1s−1 (RB system) or 2.5×106 M−1s−1 (PDA system) in liposomes. The relative IC50]−1 value of α-Toc in liposomes was also five times higher in the RB system than in the PDA-system. In consideration of the local concentration of the OH-group of α-Toc in membranes, the k Q value of α-Toc in liposomes was recalculated as 3.3×106 M−1s−1 in both the RB and PDA systems. The k Q values of all the carotenoids tested in two photosensitizing systems were almost the same. The k Q value of α-Toc in liposomes was 88 times less than in ethanol solution, but those of carotenoids in liposomes were 600–1200 times less than those in ethanol solution. The IC50]−1 value of α-Toc in liposomes was 19 times less than that in ethanol solution, whereas those of carotenoids in liposomes were 60–170 times less those in ethanol solution. There were no great differences (less than twice) in the k q and IC50]−1 values of any carotenoids. The k Q values of all carotenoids were 40–80 times higher than that of α-Toc in ethanol solution but only six times higher that of α-Toc in liposomes. The IC50]−1 values of carotenoid were also higher than that of α-Toc in ethanol solution than in liposomes, and these correlated well with the k Q values.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号