Room-temperature hydrogen release from activated carbon-confined ammonia borane |
| |
Authors: | Georges Moussa Samuel Bernard Umit B. Demirci Rodica Chiriac Philippe Miele |
| |
Affiliation: | 1. IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F- 34095 Montpellier, France;2. Université de Lyon, Université Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France |
| |
Abstract: | In chemical hydrogen storage, nanoconfinement (or nanoscaffolding) is an efficient approach to reduce the size of the particles of boron hydrides such as ammonia borane (AB, NH3BH3) at nanoscale while destabilizing its molecular network. It involves the dehydrogenation of AB at temperatures lower than 100 °C and hinders the formation of undesired gaseous by-products such as borazine. Herein, commercial activated carbon (AC) with a specific surface area of 716 m2 g−1 and a porous volume of 0.36 cm3 g−1 was used as host material for AB nanoconfinement. A composite activated carbon-ammonia borane (AC@AB) was successfully prepared by infiltration in cold conditions (0 °C). Its dehydrogenation was followed by volumetric method, FTIR, XRD, TGA, DSC, GC–MS and 11B MAS NMR. The most striking result is that the nanoconfined AB, being highly destabilized, dehydrogenates in ambient conditions, even at 3–4 °C. It is demonstrated that dihydrogen is formed according to two pathways that simultaneously take place. The first one is the dehydrogenation through inter- and/or intra-molecular reactions between protonic H and hydridic H of AB, and the second one is the acid-base reaction between protonic H of COO−H groups present on the AC surface and hydridic H of AB. |
| |
Keywords: | Activated carbon Ammonia borane Chemical hydrogen storage Nanoconfinement Nanoscaffolding |
本文献已被 ScienceDirect 等数据库收录! |
|