首页 | 本学科首页   官方微博 | 高级检索  
     


Addition effects of erbia-stabilized bismuth oxide on ceria-based carbonate composite electrolytes for intermediate temperature-−solid oxide fuel cells
Authors:Seung-Seok Baek  Naesung Lee  Byung-Kook Kim  Haejung Chang  Sun-Ju Song  Jun-Young Park
Affiliation:1. HMC & INAME, Green Energy Research Institute, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea;2. Korea Institute of Science and Technology, Seoul 136-791, Korea;3. Department of Materials Science and Engineering, Chonnam National University, Gwangju 550-749, Korea
Abstract:Highly conductive Er0.2Bi0.8O1.5 (ESB) and rare-earth doped ceria solid oxide electrolytes (SOEs) at intermediate temperature (IT) continue to suffer disadvantages in terms of thermodynamic instability and significant electronic conduction, respectively, at low oxygen partial pressure for solid oxide fuel cell (SOFC) operations. It is therefore necessary to improve the low-temperature ionic conductivity in order to enhance the electrolytic domain of these materials and thereby mitigate cell efficiency dissipation by electronic conduction. In this work, an advanced multiphase carbonate composite material based on ceria has been developed to overcome this IT-SOE challenge. This advanced electrolyte is comprise of nanostructured neodymium-doped ceria (NDC) and 38 wt% (Li–0.5Na)2CO3 carbonate with a small amount of ESB phase. The addition of 2 wt% ESB in ceria-based materials decreases the grain boundary resistance of the SOEs in the IT range. Further, a small amount of highly conducting ESB phase in the NDC/(Li–0.5Na)2CO3] composite electrolyte increases the overall conductivity of the composite SOEs. The NDC electrolyte containing 38 wt% carbonate shows the highest conductivity of 0.104 Scm−1 at 600 °C, while the conductivity is increased to 0.165 Scm−1 by the addition of 2 wt% ESB. In addition, the activation energy of the multiphase composite electrolytes (0.52 eV) is lower than that of the NDC/carbonates (0.65 eV) in the IT range. This is attributed to the effect of the physical properties of the NDC sample, induced by the light ESB doping, on the ionic conductivity, and this effect is closely associated with the grain boundary property. Furthermore, the interfacial effects of the multiphase materials also contribute to the improved conductivity of this advanced composite electrolyte.
Keywords:Intermediate temperature-solid oxide fuel cell  Doped ceria  Bismuth oxide  Carbonates  Composite electrolytes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号