首页 | 本学科首页   官方微博 | 高级检索  
     

基于惩罚机制的自适应交叉粒子群算法
引用本文:陈晋音,杨东勇,卢瑾. 基于惩罚机制的自适应交叉粒子群算法[J]. 计算机科学, 2010, 37(4): 249
作者姓名:陈晋音  杨东勇  卢瑾
作者单位:浙江工业大学信息工程学院,杭州,310023
摘    要:粒子群算法存在容易陷入局部收敛的问题,尤其在求解约束条件优化问题时。提出一种基于惩罚机制的自适应交叉粒子群算法,其分3个层次克服局部收敛,获得最优解。首先引入交叉操作,根据粒子群进化过程中的种群多样性模型得到全局最优解。其次为求解约束优化问题,提出了基于惩罚机制的交叉粒子群算法,改进了H策略和简化了P策略惩罚机制。验证了所提算法在算法复杂度没有明显增加的情况下,性能得到了提高。最后分析得出在解决约束条件优化问题时,根据问题本身单峰和多峰的不同特性,粒子群算法的参数对收敛速度和最优解有关键影响。提出用通用公式计算参数,使算法得到最优解,从而推广粒子群算法的应用。

关 键 词:粒子群算法  交叉操作  收敛模型  自适应  单峰和多峰函数优化  约束优化  
收稿时间:2009-06-02
修稿时间:2009-08-24

Self-adaptive Crossover Particle Swarm Optimization Based on Penalty Mechanism
CHEN Jin-yin,YANG Dong-yong,LU Jin. Self-adaptive Crossover Particle Swarm Optimization Based on Penalty Mechanism[J]. Computer Science, 2010, 37(4): 249
Authors:CHEN Jin-yin  YANG Dong-yong  LU Jin
Affiliation:College of Information Engineering/a>;Zhejiang University of Technology/a>;Hangzhou 310023/a>;China
Abstract:Particle swarm optimization(PSO) has obvious shortcoming such as local convergence,whose performance of solving constrained optimization problems needs to be improved especially in aspect of convergence speed and optimum value.In this paper,penalty mechanism based self-adaptive crossover PSO was put forward to solve the above two pro-blems by three levels.Aiming at the local convergence problem,crossover operation was brought into PSO.Population diversity model was used to maintain population diversity to a...
Keywords:Particle swarm optimization  Crossover  Convergence model  Self-adaptive  Unimodal and multi-modal function optimizations  Constrained optimization  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号