首页 | 本学科首页   官方微博 | 高级检索  
     


A dynamic state estimator for power system dynamic security assessment
Authors:Hassan Modir  Robert A. Schlueter
Affiliation:2. University of Mashad, Mashad, Iran;3. Department of Electrical Engineering, Michigan State University, East Lansing, MI 48824, U.S.A.
Abstract:A global modularized dynamic state estimator is formulated to provide the data which will be required for future dynamic security assessment and dynamic security enhancement applications. The dynamic state estimator is global because it is capable of estimating small and large dynamic fluctuations in voltage angle and frequency for an entire area. The dynamic state estimator is composed of the sum of the static state estimate, obtained by using present hardware and algorithms and a modularized dynamic state estimate based on a linearized classical transient stability model with a stochastic load model. This dynamic state estimate component is modularized to (1) eliminate the need to measure or model external system generation and (2) to permit a reduction in computation requirements for (a) updating the linearized power system dynamic model and (b) for computing the state estimate. The modularization, which is accomplished by decoupling the linearized dynamic model for each subregion by measuring the power injections on lines connecting the subregion to the rest of the power system, causes the dynamic state estimate to be locally referenced. A global referencing procedure is proposed and discussed. A linearized stochastic model for the Michigan Electric Coordinated System is developed to illustrate the procedures proposed for developing the stochastic load model and determining the constant gain approximation for the governor turbine energy system dynamics. A summary of results on the performance of the Kalman state estimator is presented.
Keywords:State estimation  power system control  Kalman filters  power system security assessment  random processes  power transmission  stochastic systems  nonlinear systems  identification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号