首页 | 本学科首页   官方微博 | 高级检索  
     


An 8.8-ns 54×54-bit multiplier with high speed redundantbinary architecture
Authors:Makino   H. Nakase   Y. Suzuki   H. Morinaka   H. Shinohara   H. Mashiko   K.
Affiliation:LSI Res. & Dev. Lab., Mitsubishi Electr. Corp., Itami;
Abstract:A high speed redundant binary (RB) architecture, which is optimized for the fast CMOS parallel multiplier, is developed. This architecture enables one to convert a pair of partial products in normal binary (NB) form to one RE number with no additional circuit. We improved the RB adder (RBA) circuit so that it can make a fast addition of the RB partial products. We also simplified the converter circuit that converts the final RE number into the corresponding NE number. The carry propagation path of the converter circuit is carried out with only multiplexer circuits. A 54×54-bit multiplier is designed with this architecture. It is fabricated by 0.5 μm CMOS with triple level metal technology. The active area size is 3.0×3.08 mm2 and the number of transistors is 78,800. This is the smallest number for all 54×54-bit multipliers ever reported. Under the condition of 3.3 V supply voltage, the chip achieves 8.8 ns multiplication time. The power dissipation of 540 mW is estimated for the operating frequency of 100 MHz. These are, so far, the fastest speed and the lowest power for 54×54-bit multipliers with 0.5-μm CMOS
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号