首页 | 本学科首页   官方微博 | 高级检索  
     

放电等离子体烧结制备Mg85Zn6Y9颗粒增强Mg-9Al-1Zn复合材料组织与力学性能
引用本文:李仲杰,余晖,范少达,蔡学成,彭秋明,杨明绪,于化顺. 放电等离子体烧结制备Mg85Zn6Y9颗粒增强Mg-9Al-1Zn复合材料组织与力学性能[J]. 复合材料学报, 2018, 35(9): 2512-2520. DOI: 10.13801/j.cnki.fhclxb.20171228.004
作者姓名:李仲杰  余晖  范少达  蔡学成  彭秋明  杨明绪  于化顺
作者单位:1. 山东大学 材料科学与工程学院 材料液固结构演变与加工教育部重点实验室, 济南 250061;2. 河北工业大学 材料科学与工程学院, 天津 300130;3. 燕山大学 材料科学与工程学院 亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004;4. 河北工业大学 天津市材料层状复合与界面控制技术重点实验室, 天津 300130
摘    要:采用高能球磨法和放电等离子体烧结(SPS)技术,以包含100%长周期堆垛有序结构(LPSO)相Mg85Zn6Y9镁合金为原料,通过将其球磨成纳米晶颗粒后与Mg-9Al-1Zn(AZ91)镁合金雾化颗粒进行机械混合,并在350℃烧结温度下成功制备出不同质量分数(0~30wt%)的LPSO相Mg85Zn6Y9颗粒增强AZ91复合材料(Mg85Zn6Y9/AZ91)。采用光学显微镜(OM)、SEM及TEM对Mg85Zn6Y9/AZ91复合材料的微观组织结构进行表征;采用XRD分析其固溶处理前后的相转变;与此同时对复合材料进行显微硬度与压缩试验,综合研究其微观组织与力学性能的关系。相关结果表明,Mg85Zn6Y9颗粒经3 h高能球磨后颗粒尺寸显著减小,硬度随晶粒细化而提升。Mg85Zn6Y9增强颗粒主要分布在AZ91基体颗粒边界处,随着Mg85Zn6Y9质量分数的增加,增强相颗粒有相互结合成连续网格状趋势。增强颗粒与基体界面处未见明显过渡层,基体界面处的β相经400℃×24 h固溶处理后进入基体,部分增强颗粒亦转变为Mg相。本实验条件下制备的最佳性能的20wt% Mg85Zn6Y9/AZ91复合材料经固溶处理后的室温屈服强度从200 MPa转变为230 MPa,屈服强度均较未添加Mg85Zn6Y9的AZ91镁合金有较大的提高。

关 键 词:长周期堆垛结构  高能球磨  放电等离子体烧结  镁基复合材料  微观组织  力学性能  
收稿时间:2017-09-18

Microstructural evolution and mechanical properties of Mg85Zn6Y9 powder reinforced Mg-9Al-1Zn composites prepared by spark plasma sintering
LI Zhongjie,YU Hui,FAN Shaoda,CAI Xuecheng,PENG Qiuming,YANG Mingxu,YU Huashun. Microstructural evolution and mechanical properties of Mg85Zn6Y9 powder reinforced Mg-9Al-1Zn composites prepared by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2512-2520. DOI: 10.13801/j.cnki.fhclxb.20171228.004
Authors:LI Zhongjie  YU Hui  FAN Shaoda  CAI Xuecheng  PENG Qiuming  YANG Mingxu  YU Huashun
Abstract:The composition of as-cast Mg85Zn6Y9 alloy with almost 100% long period stacking ordered structure (LPSO) phase was milled into nanocrystalline powder by the high energy ball milling, then was mechanical blended with atomized Mg-9Al-1Zn(AZ91) powder. The Mg85Zn6Y9/AZ91 composites with the mass fraction of Mg85Zn6Y9 powder from 0wt% to 30wt% were prepared by spark plasma sintering (SPS) at 350℃. The microstructure of Mg85Zn6Y9/AZ91 composites was characterized with optical microscope (OM), SEM and TEM; XRD was used to analyze phase transition of the composite before and after solid solution treatment; microhardness and compression test were also carried out to study the mechanical properties of the composites. The results show that the Mg85Zn6Y9 powder's grain size decreases and the microhardness of the Mg85Zn6Y9 powder increases obviously after 3 h high energy ball milling. In addition, the Mg85Zn6Y9 powder is mainly distributed at the boundaries of the AZ91 matrix powder. With more addition of Mg85Zn6Y9 powder, the Mg85Zn6Y9 powders likely combine with each other to form a continuous grid. Moreover, there is no obvious transition layer at the interface between Mg85Zn6Y9 powder and matrix. After solid solution treatment at 400℃ for 24 h, β phase is dissolved into the matrix and LPSO phase is disappeared gradually. The compressive yield strength at room temperature of the prepared 20wt% Mg85Zn6Y9/AZ91 composite with best performance changes from 200 MPa to 230 MPa, which the yield strength is significantly enhanced compared with AZ91 without Mg85Zn6Y9 powder addition.
Keywords:long period stacking ordered structure  high energy ball milling  spark plasma sintering  magnesium matrix composites  microstructure  mechanical properties  
本文献已被 CNKI 等数据库收录!
点击此处可从《复合材料学报》浏览原始摘要信息
点击此处可从《复合材料学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号