摘 要: | 本文基于权重不平衡有向网络,对一类分布式约束优化问题进行研究,其中全局目标函数等于具有李普希兹梯度的强凸目标函数之和,并且每个智能体的状态都有一个局部约束集.每个智能体仅知道自身的局部目标函数和非空约束集.本文的目标是用分布式方法求解该问题的最优解.针对优化问题,提出了一种新的分布式投影梯度连续时间协调算法,利用拉普拉斯矩阵的零特征值对应的左特征向量消除了图的不平衡性.在某些假设下,结合凸分析理论和李雅普诺夫稳定性理论,证明了算法能够获得问题的最优解.最后,通过仿真验证了算法的有效性.
|