首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus
Authors:NC Day  PJ Shaw  AL McCormack  PJ Craig  W Smith  R Beattie  TL Williams  SB Ellis  PG Ince  MM Harpold  D Lodge  SG Volsen
Affiliation:MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, U.K.
Abstract:The distribution of voltage-dependent calcium channel subunits in the central nervous system may provide information about the function of these channels. The present study examined the distribution of three alpha-1 subunits, alpha 1A, alpha 1B and alpha 1E, in the normal human hippocampal formation and parahippocampal gyrus using the techniques of in situ hybridization and immunocytochemistry. All three subunit mRNAs appeared to be similarly localized, with high levels of expression in the dentate granule and CA pyramidal layer. At the protein level, alpha 1A, alpha 1B and alpha 1E subunits were differentially localized. In general, alpha 1A-immunoreactivity was most intense in cell bodies and dendritic processes, including dentate granule cells, CA3 pyramidal cells and entorhinal cortex pre-alpha and pri-alpha cells. The alpha 1B antibody exhibited relatively weak staining of cell bodies but stronger staining of neuropil, especially in certain regions of high synaptic density such as the polymorphic layer of the dentate gyrus and the stratum lucidum and radiatum of the CA regions. The alpha 1E staining pattern shared features in common with both alpha 1A and alpha 1B, with strong immunoreactivity in dentate granule, CA3 pyramidal and entorhinal cortex pri-alpha cells, as well as staining of the CA3 stratum lucidum. These findings suggest regions in which particular subunits may be involved in synaptic communication. For example, comparison of alpha 1B and alpha 1E staining in the CA3 stratum lucidum with calbindin-immuno-reactivity suggested that these two calcium channels subunits may be localized presynaptically in mossy fibre terminals and therefore may be involved in neurotransmitter release from these terminals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号