首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of microstructure and mechanical properties on wear behavior of plasma-sprayed Cr2O3-YSZ-SiC coatings
Authors:SM Hashemi  N Parvin  Z Valefi
Affiliation:1. Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, PO Box 15875-4413, Tehran, Iran;2. Materials Engineering Research Center, Malek Ashtar University of Technology, PO Box 15875-1774, Tehran, Iran
Abstract:In this study, the microstructure and mechanical properties of the atmospheric plasma-sprayed Cr2O3 (C), Cr2O3-20YSZ (CZ), and Cr2O3-20YSZ-10SiC (CZS) coatings were evaluated and also compared with each other, so as to explain the coatings wear behavior. Microstructural evaluations included X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and porosity measurements. Mechanical tests including bonding strength, fracture toughness, and micro-hardness tests were used to advance our understanding of the correlation between the coatings properties and their wear behavior. The sliding wear test was conducted using a ball-on-disk configuration against an alumina counterpart at room temperature. Addition of multimodal YSZ and subsequent SiC reinforcements to the Cr2O3 matrix resulted in an increase in the fracture toughness and Vickers micro-hardness, respectively. It was found that the composite coatings had comparable coefficients of friction with pure Cr2O3 coatings. When compared with the C coating, the CZ and CZS composite coatings with higher fracture toughness exhibited superior wear resistance. Observation of the wear tracks of the coatings indicated that the lower wear rates of the CZ and CZS coatings were due to the higher plastic deformation of the detached materials. In fact, improvement in the wear resistance of the composite coatings was attributed to a phase transformation toughening mechanism associated with tetragonal zirconia which created more ductile tribofilms during the wear test participated in filling the pores of coatings.
Keywords:Ball-on-disk wear  Plasma spray coating  Ceramic matrix composite  Multimodal/nano  Mechanical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号