首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Cake Compression on the Performance of Centrifugal Dewatering
Authors:Kuo-Jen Hwang  Ku-Haw Chou
Affiliation:  a Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taipei Hsien, Taiwan
Abstract:The effect of cake compression on the centrifugal dewatering is investigated under various rotating speeds and different kinds of cakes. A numerical method is proposed to estimate the capillary pressure and cake permeability under various cake saturations. The most dewatering in this study are operated at the funicular state of cake. The cake permeability decreases, while the capillary pressure increases rapidly, with the decrease of cake saturation during a centrifugal dewatering. The cake saturation can also be simulated once the relations among capillary pressure, cake permeability, and cake saturation are known. The deviations between simulated saturations and experimental data for compressible talc cakes are less than 2%. The centrifugal dewatering of compressible cake includes two mechanisms, the water squeeze due to cake compression and the centrifugal drainage due to pressure difference. The role of cake compression is dominant at the initial 500 s of the dewatering period, and these two factors are almost equal in magnitude as well as in importance when the cake approaches its equilibrium saturation. The porosity and compressibility of cake play the major roles in determining the equilibrium cake saturation. The equilibrium saturation of the compressible talc cake with a lower porosity is much higher than that of incompressible Al2O3 cake under a fixed rotating speed. An increase in rotating speed (centrifugal effect) results in a lower equilibrium cake saturation for either compressible or incompressible cakes; however, the increase in rotating speed is more efficient for an incompressible cake in the centrifugal dewatering.
Keywords:Cake compression  Cake saturation  Capillary pressure  Centrifugal dewatering
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号