首页 | 本学科首页   官方微博 | 高级检索  
     


Donor–Acceptor Poly(3‐hexylthiophene)‐block‐Pendent Poly(isoindigo) with Dual Roles of Charge Transporting and Storage Layer for High‐Performance Transistor‐Type Memory Applications
Authors:Jau‐Tzeng Wang  Shoichi Takashima  Hung‐Chin Wu  Yu‐Cheng Chiu  Yougen Chen  Takuya Isono  Toyoji Kakuchi  Toshifumi Satoh  Wen‐Chang Chen
Affiliation:1. Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan;2. Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan;3. Faculty of Engineering, Hokkaido University, Sapporo, Japan
Abstract:Field‐effect transistor memories usually require one additional charge storage layer between the gate contact and organic semiconductor channel. To avoid such complication, new donor–acceptor rod–coil diblock copolymers (P3HT44b‐Pison) of poly(3‐hexylthiophene) (P3HT)‐block‐poly(pendent isoindigo) (Piso) are designed, which exhibit high performance transistor memory characteristics without additional charge storage layer. The P3HT and Piso blocks are acted as the charge transporting and storage elements, respectively. The prepared P3HT44b‐Pison can be self‐assembled into fibrillar‐like nanostructures after the thermal annealing process, confirmed by atomic force microscopy and grazing‐incidence X‐ray diffraction. The lowest‐unoccupied molecular orbital levels of the studied polymers are significantly lowered as the block length of Piso increases, leading to a stronger electron affinity as well as charge storage capability. The field‐effect transistors (FETs) fabricated from P3HT44b‐Pison possess p‐type mobilities up to 4.56 × 10?2 cm2 V?1 s?1, similar to that of the regioregular P3HT. More interestingly, the FET memory devices fabricated from P3HT44b‐Pison exhibit a memory window ranging from 26 to 79 V by manipulating the block length of Piso, and showed stable long‐term data endurance. The results suggest that the FET characteristics and data storage capability can be effectively tuned simultaneously through donor/acceptor ratio and thin film morphology in the block copolymer system.
Keywords:block copolymers  charge storage  field‐effect transistor  memory devices  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号