首页 | 本学科首页   官方微博 | 高级检索  
     


Surface‐Shielding Nanostructures Derived from Self‐Assembled Block Copolymers Enable Reliable Plasma Doping for Few‐Layer Transition Metal Dichalcogenides
Authors:Soonmin Yim  Dong Min Sim  Woon Ik Park  Min‐Jae Choi  Jaesuk Choi  Jaebeom Jeon  Kwang Ho Kim  Yeon Sik Jung
Affiliation:1. Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong‐gu, Daejeon, Republic of Korea;2. Global Frontier R&D Center for Hybrid Interface Materials (HIM), Geumjeong‐gu, Busan, Republic of Korea;3. School of Materials Science and Engineering, Pusan National University, Geumjeong‐gu, Busan, Republic of Korea
Abstract:Precise modulation of electrical and optical properties of 2D transition metal dichalcogenides (TMDs) is required for their application to high‐performance devices. Although conventional plasma‐based doping methods have provided excellent controllability and reproducibility for bulk or relatively thick TMDs, the application of plasma doping for ultrathin few‐layer TMDs has been hindered by serious degradation of their properties. Herein, a reliable and universal doping route is reported for few‐layer TMDs by employing surface‐shielding nanostructures during a plasma‐doping process. It is shown that the surface‐protection oxidized polydimethylsiloxane nanostructures obtained from the sub‐20 nm self‐assembly of Si‐containing block copolymers can preserve the integrity of 2D TMDs and maintain high mobility while affording extensive control over the doping level. For example, the self‐assembled nanostructures form periodically arranged plasma‐blocking and plasma‐accepting nanoscale regions for realizing modulated plasma doping on few‐layer MoS2, controlling the n‐doping level of few‐layer MoS2 from 1.9 × 1011 cm?2 to 8.1 × 1011 cm?2 via the local generation of extra sulfur vacancies without compromising the carrier mobility.
Keywords:block copolymer  molybdenum disulfide  plasma doping  self‐assembly  transition metal dichalcogenide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号