首页 | 本学科首页   官方微博 | 高级检索  
     


Earth‐Abundant and Durable Nanoporous Catalyst for Exhaust‐Gas Conversion
Authors:Takeshi Fujita  Hideki Abe  Toyokazu Tanabe  Yoshikazu Ito  Tomoharu Tokunaga  Shigeo Arai  Yuta Yamamoto  Akihiko Hirata  Mingwei Chen
Affiliation:1. WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan;2. National Institute for Materials Science, Tsukuba, Ibaraki, Japan;3. Department of Material and Life Chemistry, Kanagawa University, Yokohama, Japan;4. Ecotopia Science Institute, Nagoya University, Nagoya, Japan;5. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract:Precious metals (Pt and Pd) and rare earth elements (Ce in the form of CeO2) are typical materials for heterogeneous exhaust‐gas catalysts in automotive systems. However, their limited resources and high market‐driven prices are principal issues in realizing the path toward a more sustainable society. In this regard, herein, a nanoporous NiCuMnO catalyst, which is both abundant and durable, is synthesized by one‐step free dealloying. The catalyst thus developed exhibits catalytic activity and durability for NO reduction and CO oxidation. Microstructure characterization indicates a distinct structural feature: catalytically active Cu/CuO regions are tangled with a stable nanoporous NiMnO network after activation. The results obtained by in situ transmission electron microscopy during NO reduction clearly capture the unique reaction‐induced self‐transformation of the nanostructure. This finding can possibly pave the way for the design of new catalysts for the conversion of exhaust gas based on the element strategy.
Keywords:CO oxidation  environmental transmission electron microscopy  heterogeneous catalyst  nanoporous metal  NO reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号