首页 | 本学科首页   官方微博 | 高级检索  
     


Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors
Authors:Milan Pe?i?  Franz Paul Gustav Fengler  Luca Larcher  Andrea Padovani  Tony Schenk  Everett D Grimley  Xiahan Sang  James M LeBeau  Stefan Slesazeck  Uwe Schroeder  Thomas Mikolajick
Affiliation:1. NaMLab gGmbH/TU Dresden, Dresden, Germany;2. DISMI, Università di Modena e Reggio Emilia, Reggio, Emilia, Italy;3. Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
Abstract:Novel hafnium oxide (HfO2)‐based ferroelectrics reveal full scalability and complementary metal oxide semiconductor integratability compared to perovskite‐based ferroelectrics that are currently used in nonvolatile ferroelectric random access memories (FeRAMs). Within the lifetime of the device, two main regimes of wake‐up and fatigue can be identified. Up to now, the mechanisms behind these two device stages have not been revealed. Thus, the main scope of this study is an identification of the root cause for the increase of the remnant polarization during the wake‐up phase and subsequent polarization degradation with further cycling. Combining the comprehensive ferroelectric switching current experiments, Preisach density analysis, and transmission electron microscopy (TEM) study with compact and Technology Computer Aided Design (TCAD) modeling, it has been found out that during the wake‐up of the device no new defects are generated but the existing defects redistribute within the device. Furthermore, vacancy diffusion has been identified as the main cause for the phase transformation and consequent increase of the remnant polarization. Utilizing trap density spectroscopy for examining defect evolution with cycling of the device together with modeling of the degradation results in an understanding of the main mechanisms behind the evolution of the ferroelectric response.
Keywords:FeCAP  ferroelectric HfO2  modeling  phase‐change
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号