首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen‐Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis
Authors:Marie Jake?ová  Do?ukan Hazar Apaydin  Mykhailo Sytnyk  Kerstin Oppelt  Wolfgang Heiss  Niyazi Serdar Sariciftci  Eric Daniel G?owacki
Affiliation:1. Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Altenbergerstrasse 69, A‐4040 Linz, Austria;2. Materials for Electronics and Energy Technology (i‐MEET), Friedrich‐Alexander‐Universit?t Erlangen‐Nürnberg, Martensstrasse 7, D‐91058 Erlangen, Germany;3. Energie Campus Nürnberg (EnCN), Fürtherstrasse 250, D‐90429 Nürnberg, Germany;4. Institute of Inorganic Chemistry, Johannes Kepler University, Altenbergerstrasse 69, A‐4040 Linz, Austria
Abstract:Research on semiconductor photocatalysts for the conversion of solar energy into chemical fuels has been at the forefront of renewable energy technologies. Water splitting to produce H2 and CO2 reduction to hydrocarbons are the two prominent approaches. A lesser‐known process, the conversion of solar energy into the versatile high‐energy product H2O2 via reduction of O2 has been proposed as an alternative concept. Semiconductor photoelectrodes for the direct photosynthesis of H2O2 from O2 have not been applied up to now. Photoelectrocatalytic oxygen reduction to peroxides in aqueous electrolytes by hydrogen‐bonded organic semiconductor is observed photoelectrodes. These materials have been found to be remarkably stable operating in a photoelectrochemical cell converting light into H2O2 under constant illumination for at least several days, functioning in a pH range from 1 to 12. This is the first report of a semiconductor photoelectrode for H2O2 production, with catalytic performance exceeding prior reports on photocatalysts by one to two orders of magnitude in terms of peroxide yield/catalyst amount/time. The combination of a strongly reducing conduction band energy level with stability in aqueous electrolytes opens new avenues for this widely available materials class in the field of photo(electro) catalysis.
Keywords:hydrogen peroxide  hydrogen‐bonded pigments  organic semiconductors  photocatalysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号