首页 | 本学科首页   官方微博 | 高级检索  
     

高维空间中针对离群点检测的特征抽取
引用本文:张小燕,胡昊,苏勇. 高维空间中针对离群点检测的特征抽取[J]. 计算机工程与应用, 2012, 48(22): 189-194
作者姓名:张小燕  胡昊  苏勇
作者单位:江苏科技大学 计算机科学与工程学院,江苏 镇江 212003
摘    要:提出了在高维空间中利用特征抽取提高离群点检测性能问题的解决方法。近年来,传统的检测技术已经不能适应高维的数据。介绍了一种有效的基于特征抽取的DROPT方法,该方法整合ERE策略和APCDA方法进行无特征损失的本征空间规则化之后降维,能够大大提高离群点检测精度,在此基础上还可以减小检测难度。实验证明这种在离群点检测中应用特征抽取的方法有一定的实用性。

关 键 词:特征抽取  降维  离群点检测  

Feature extraction for outlier detection in high-dimensional spaces
ZHANG Xiaoyan , HU Hao , SU Yong. Feature extraction for outlier detection in high-dimensional spaces[J]. Computer Engineering and Applications, 2012, 48(22): 189-194
Authors:ZHANG Xiaoyan    HU Hao    SU Yong
Affiliation:School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
Abstract:This work addresses the problem of feature extraction for boosting the performance of outlier detectors in high-dimensional spaces.Recent years,the prominence of multidimensional data on which traditional detection techniques usually fail to work as expected due to the curse of dimensionality.This paper introduces an efficient feature extraction method can take advantage of both ERE and APCPA which brings nontrivial improvements in detection accuracy in outlier detection.Similar to APCDA,this approach performs engenspace decomposition as well as feature extraction on the weight-adjusted scatter matrices,and applies the strategy of ERE during the eigenspace regularization process to preserve the discriminant information.Experiments carried out on real datasets demonstrate the feasibility of feature extraction in outlier detection.
Keywords:feature extraction  dimensionality reduction  outlier detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号