首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的约束优化差分进化算法
引用本文:龙文,徐松金,焦建军. 一种改进的约束优化差分进化算法[J]. 计算机工程与应用, 2012, 48(25): 34-38
作者姓名:龙文  徐松金  焦建军
作者单位:1. 贵州财经学院贵州省经济系统仿真重点实验室,贵阳,550004
2. 铜仁学院数学与计算机科学系,贵州铜仁,554300
基金项目:国家自然科学基金(No.61074069)
摘    要:提出一种改进的差分进化算法用于求解约束优化问题.该算法在处理约束时不引入惩罚因子,使约束处理问题简单化.利用佳点集方法初始化个体以维持种群的多样性.结合差分进化算法两种不同变异策略的特点,对可行个体与不可行个体分别采用DE/best/1变异策略和DE/rand/1策略,以提高算法的全局收敛性能和收敛速率.用几个标准的Benchmark问题进行了测试,实验结果表明该算法是一种求解约束优化问题的有效方法.

关 键 词:约束优化问题  差分进化算法  佳点集  变异策略

Improved constrained optimization differential evolution algorithm
LONG Wen , XU Songjin , JIAO Jianjun. Improved constrained optimization differential evolution algorithm[J]. Computer Engineering and Applications, 2012, 48(25): 34-38
Authors:LONG Wen    XU Songjin    JIAO Jianjun
Affiliation:1.Guizhou Key Laboratory of Economics System Simulation,Guizhou College of Finance and Economics,Guiyang 550004,China 2.Department of Mathematics and Computer Science,Tongren University,Tongren,Guizhou 554300,China
Abstract:An improved differential evolution algorithm is proposed to solve constrained optimization problems,which does not introduce penalty parameters to deal with constraints.In the process of evolution,the individuals generation based on good-point-set method is introduced into the evolutionary algorithm initial step.In order to improve global convergence and convergence speed of the proposed algorithm,DE/best/1 mutation scheme and DE/rand/1 mutation scheme are used to the feasible solution and the infeasible solution respectively.Several class Benchmark problems are tested,the results show that the proposed algorithm is an effective way for constrained optimization problems.
Keywords:constrained optimization problems  Differential Evolution(DE)algorithm  good point set  mutation strategy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号