首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of the SAPO-11 synthetic process on dehydration of ethanol to ethylene
Authors:Lina WU  Xiaoxing SHI  Qun CUI  Haiyan WANG  He HUANG
Affiliation:1. College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China; 2. Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
Abstract:The effects of the synthetic condition of SAPO-11 molecular sieves on ethanol dehydration to ethylene were studied. Product-compositions, ethanol conversion, and selectivity to ethylene of synthesized and commercial SAPO-11 molecular sieves were compared. Results are as follows: the optimal synthetic conditions for SAPO-11 molecular sieves are adding pseudoboehmite before orthophoshporic, using di-n- propylamine as the template, having a mass fraction of 40% colloidal silica as the silica source and the starting gel obtained, and running at 200°C for 48 h. From the patterns of NH3-TPD, the amount of acid synthesized by SAPO-11 molecular sieves is less than that by commercial SAPO-11 molecular sieves, and has a stronger weak acid. Also, ethanol conversion and selectivity to ethylene reached 99% at 280°C on synthesized SAPO-11, lower by 20°C compared to commercial SAPO-11. For two SAPO-11 molecular sieves, the by-products in the gas phase are mainly ethane, propane, propene, isobutane, n-butane, propadiene, butylene and some higher hydrocarbons. The by-products in the liquid phase are ethyl ether and acetaldehyde.
Keywords:SAPO-11 molecular sieves  synthesis  ethanol  ethylene  dehydration  
点击此处可从《Frontiers of Chemical Science and Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Chemical Science and Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号