摘 要: | 为提升黑色素瘤图像二分类问题的准确率,针对黑色素瘤图像中存在的有效特征不明显的问题,借鉴特征金字塔思想,提出一种改进的残差网络的黑色素瘤图像分类模型。使用迁移学习,以预训练的ResNet50模型为基础结构,利用改进的注意力机制筛选有效特征,用空洞卷积改进Inception结构并基于该结构构建额外的分支以不同方式提取并融合特征,用加权的方式把分支的特征和ResNet50模型主干提取的特征进行融合。所提模型在ISIC 2017数据集上可以取得87.8%分类准确率,表明了其对解决黑色素瘤图像二分类问题的有效性。
|