首页 | 本学科首页   官方微博 | 高级检索  
     


Antioxidant deactivation on graphenic nanocarbon surfaces
Authors:Liu Xinyuan  Sen Sujat  Liu Jingyu  Kulaots Indrek  Geohegan David  Kane Agnes  Puretzky Alex A  Rouleau Christopher M  More Karren L  Palmore G Tayhas R  Hurt Robert H
Affiliation:Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Abstract:This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.
Keywords:catalysis  nanotoxicity  nanotubes  graphene  oxidative stress
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号