Analysis of scattering from rough surfaces at large incidenceangles using a periodic-surface moment method |
| |
Authors: | Chen R. West J.C. |
| |
Affiliation: | Quantum Effect Design Inc., San Jose, CA; |
| |
Abstract: | The moment method is used to calculate electromagnetic backscattering from one-dimensionally rough surfaces at near-grazing incidence (angles of incidence up to 89°). A periodic representation of the scattering surface is used to prevent edge effects in the calculated scattering without the use of an artificial illumination weighting function. A set of universal series common to all elements of the moment interaction matrix are derived that allow the efficient application of the moment method to the periodic surface. Comparison with other moment method implementations demonstrates the efficiency of this approach. The scattering from surfaces with Gaussian roughness spectra is calculated at both horizontal and vertical polarizations, and the results are compared with the theoretical predictions of the small-perturbation method (SPM) and Kirchhoff approximation (KA). SPM shows the expected loss of accuracy in predicting the vertically polarized backscattering from small-roughness, short-correlation-length surfaces at large incidence angles. SPM accurately predicts the backscattering from the same type of surface at incidence up to 89° at horizontal polarization, KA provides accurate estimates of the scattering from long correlation-length surfaces as long as the incidence angle is small enough that surface self-shadowing does not occur. When shadowing occurs, KA severely underpredicts vertically polarized backscattering and less severely overpredicts backscattering at horizontal polarization |
| |
Keywords: | |
|
|