Fracture characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with refined microstructure using hydrogen |
| |
Authors: | M. Niinomi B. Gong T. Kobayashi Y. Ohyabu O. Toriyama |
| |
Affiliation: | (1) Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, 441 Toyohashi, Japan;(2) State Key Laboratory for Fatigue and Fracture, Institute of Metal Research, Academia Sinica, 110015 Shenyang, China;(3) Naoetsu Works, Sumitomo Metals Industries, Co., Ltd., 942 Jyouetsu, Japan;(4) Graduate School, Toyohashi University of Technology, 441 Toyohashi, Japan |
| |
Abstract: | The hydrogenation behavior of Ti-6Al-4V, with the starting microstructures of coarse equiaxed α and coarse Widmanstätten α, respectively, was investigated under a hydrogen pressure of 0.1 MPa at temperatures between 843 and 1123 K. The hydrogen content was determined as a function of hydrogenation time, hydrogenation temperature, and hydrogen flow rate. The phases presented in the alloy of after hydrogenation were determined with X-ray and electron diffraction analysis in order to define the effect of Thermochemical Processing (TCP) on the microstructure of the alloy. Mechanical properties and fracture toughness of Ti-6Al-4V and Ti-5Al-2.5Fe subjected to the various TCP were then investigated. Hydrogenation of Ti-6Al-4V with the starting microstructure of coarse equiaxed α at 1023 K, just below hydrogen saturated β (denoted β″ (H)) transus temperature, produces a microstructure of a, orthohombic martensite (denoted α″ (H)) and β (H). Hydrogenation at 1123 K, above β (H) transus, results in a microstructure of α″ (H) and β (H). Microstructure refinement during TCP results mainly from decomposition of α″ (H) and ;β (H) into a fine mixture of α + β during dehydrogenation. An alternative TCP method is below β (H) transus hydrogenation (BTH), consisting of hydrogenation of the alloy below the hydrogenated β (H) transus temperature, air cooling to room temperature, and dehydrogenation at a lower temperature, which is found to improve mechanical properties significantly over a conventional TCP treatment. Compared with the untreated material, the BTH treatment increases the yield strength and increases the ultimate tensile strength significantly without decreasing the tensile elongation in the starting microstructure of coarse equiaxed α or with a little decrease in the tensile elongation in the starting microstructure of coarse Widmanstätten α, although the conventional TCP treatment results in a large decrease in elongation over the unprocessed material in Ti-6Al-4V. In Ti-5Al-2.5 Fe, both conventional TCP and BTH result in a increase in yield strength, ultimate tensile strength, and elongation; however, the BTH gives the best balance between strength and elongation. The TCP-treated Ti-6Al-4V shows smaller fracture toughness compared with the unprocessed material, while TCP-treated Ti-5Al-2.5Fe shows greater fracture toughness compared with the unprocessed material. The BTH treatment results in a improvement in fatigue strength in both Ti-6Al-4V and Ti-5Al-2.5Fe. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|