首页 | 本学科首页   官方微博 | 高级检索  
     


Structural changes in corrosion-resistant steel 03Kh26N6T with initial anisotropy
Authors:M. F. Akhmed Fuad  M. A. Tsepin  A. A. Lobach  O. M. Smirnov
Abstract:Conclusion Resultant analytic curves (2) and (3) are an accurate mathematical model describing the anisotropy characteristics in steel 03Kh26N6T and their variation during superplastic deformation. In this case, the phenomenological laws governing structural changes are based on fully defined physical notions concerning the diffusion nature of the processes that take place in this case.Analysis of the structural changes in the steel with initial metallographic anisotropy indicates that in designing and calculating processes involving the superplastic deformation of hollow articles formed from sheet blanks, it is necessary to consider the different magnitude of the structural components in the characteristic directions and, accordingly, the different rate of structural changes. This may determine to a significant degree both the quality of the components produced (for example, variations in thickness) and variations in the optimal superplastic-deformation regime.The new quantitative data on steel anisotropy, which were obtained in this study, should be considered in developing mathematical models of the superplastic deformation process, which describe the shape variation of structurally sensitive materials with a high accuracy.It is obvious that to determine the range of optimal temperature-rate coditions of superplasticity, the relationships presented in the study make it possible to assess the activation energy of structural variations and, in turn, to ascertain not only the controlling mechanisms of superplastic deformation but also to solve the temperature problem of selecting the SPD regime.Tabbinsk Metallurgical Institute (Kair, ARE). The Moscow Institute of Steels and Alloys. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 20–23, September, 1991.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号