首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于JADE改进的差分演化算法
引用本文:李康顺,王法杰,张楚湖,杨磊,陈琰. 一种基于JADE改进的差分演化算法[J]. 计算机工程与科学, 2015, 37(9): 1698-1706
作者姓名:李康顺  王法杰  张楚湖  杨磊  陈琰
作者单位:;1.华南农业大学信息学院
基金项目:广东省自然科学资金资助项目(2014A030313454);国家星火计划资助项目(2013GA780033)
摘    要:差分演化算法有局部搜索能力不足、容易跌入局部最优等缺点,其搜索性能主要依赖于对杂交概率和缩放因子的设置。为了改善上述缺陷,对带归档的自适应差分演化算法JADE进行深入的研究与分析,提出了改进的自适应差分演化算法ZJADE。该算法采用斜帐篷混沌映射函数初始化种群,在每次迭代中为每个个体分别产生满足正态分布、柯西分布的杂交概率和满足正态分布的缩放因子,并且记录成功变异个体的杂交概率和缩放因子,引入统计杂交概率,采用两种策略自适应地更新杂交概率。在13个经典测试函数上将ZJADE算法与多种经典自适应差分演化算法进行对比,实验结果表明,ZJADE算法在解的精度与收敛速度上更优,具有更好的搜索性能。

关 键 词:自适应差分演化算法  混沌映射  统计杂交概率  柯西分布  正态分布
收稿时间:2014-11-18
修稿时间:2015-09-25

An improved differential evolution algorithm based on JADE
LI Kang shun,WANG Fa jie,ZHANG Chu hu,YANG Lei,CHEN Yan. An improved differential evolution algorithm based on JADE[J]. Computer Engineering & Science, 2015, 37(9): 1698-1706
Authors:LI Kang shun  WANG Fa jie  ZHANG Chu hu  YANG Lei  CHEN Yan
Affiliation:(College of Information,South China Agricultural University,Guangzhou 510642,China)
Abstract:Differential evolution algorithms are weak in local searching and easy to dropping into the local optimal solutions at the same time. The search performance of these algorithms is mainly based on the parameter setting of their crossover probability and mutation factors. To improve the above shortcomings of differential evolution algorithms, we propose an adaptive differential evolution algorithm called ZJADE on the basis of in depth research and analysis of the adaptive differential evolution with optional external archive (JADE). Skew tent chaotic mapping is used to initialize the population in order to generate uniformly dispersed population. During each generation, the crossover probability of each individual is generated according to the normal distribution and the Cauchy distribution while the mutation factors are independently generated according to the normal distribution. The crossover probability and mutation factors of successful individuals are saved, and the statistical crossover probability is employed. The ZJADE algorithm is compared with multiple state of the art adaptive differential evolution algorithms through thirteen classical test functions. The results show that the ZJADE obtains better solution accuracy and quicker convergence speed, thus having a better search performance.
Keywords:adaptive differential evolution algorithm  chaotic mapping  statistical crossover probability  Cauchy distribution  normal distribution,
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号