首页 | 本学科首页   官方微博 | 高级检索  
     


P-type doping of GaAs by carbon implantation
Authors:H Jiang  R G Elliman  J S Williams
Affiliation:(1) Department of Electronic Materials Engineering, Australian National University, 0200 Canberra, ACT, Australia
Abstract:The electrical properties of C-implanted <100> GaAs have been studied following rapid thermal annealing at temperatures in the range from 750 to 950°C. This includes dopant profiling using differential Hall measurements. The maximum p-type activation efficiency was found to be a function of C-dose and annealing temperature, with the optimum annealing temperature varying from 900°C for C doses of 5 × 1013 cm−2 to 800°C for doses ≥5 × 1014cm−2. For low dose implants, the net p-type activation efficiency was as high as 75%; while for the highest dose implants, it dropped to as low as 0.5%. Moreover, for these high-dose samples, 5 × 1015 cm−2, the activation efficiency was found to decrease with increasing annealing temperature, for temperatures above ∼800°C, and the net hole concentration fell below that of samples implanted to lower doses. This issue is discussed in terms of the amphoteric doping behavior of C in GaAs. Hole mobilities showed little dependence on annealing temperature but decreased with increasing implant dose, ranging from ∼100 cm2/V·s for low dose implants, to ∼65 cm2/V·s for high dose samples. These mobility values are the same or higher than those for Be-, Zn-, or Cd-implanted GaAs.
Keywords:Amphoteric doping  carbon implantation  GaAs
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号