首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的固体导弹耗尽关机姿态调制方法研究
引用本文:鲜勇,李少朋,李邦杰.基于BP神经网络的固体导弹耗尽关机姿态调制方法研究[J].兵工学报,2015,36(4):668-673.
作者姓名:鲜勇  李少朋  李邦杰
作者单位:(第二炮兵工程大学 七系, 陕西 西安 710025)
摘    要:针对固体火箭发动机燃料剩余问题,采用BP神经网络逼近算法,推导建立了一种适用于耗尽关机条件下,对导弹2级飞行进行能量管理的姿态调制方案。该方案在干扰条件下根据再入弹道倾角要求、推力偏差及射程的不同,2级点火10 s时弹上在线计算调制姿态,保证了能量消耗精度的同时为导弹在耗尽闭路导引段进行闭路制导提供了前提条件。通过仿真验证了该模型的正确性和可行性。

关 键 词:兵器科学与技术    耗尽关机    BP神经网络    能量管理    闭路制导  
收稿时间:2014-06-04

An Approach to Attitude Angle Adjustment of Solid Missiles under the Condition of Depleted Shutdown Based on BP Neural Network
XIAN Yong,LI Shao-peng,LI Bang-jie.An Approach to Attitude Angle Adjustment of Solid Missiles under the Condition of Depleted Shutdown Based on BP Neural Network[J].Acta Armamentarii,2015,36(4):668-673.
Authors:XIAN Yong  LI Shao-peng  LI Bang-jie
Affiliation:(The Seventh Department, the Second Artillery Engineering University, Xi’an 710025, Shaanxi, China)
Abstract:To solve the fuel remaining issue of solid engine, an attitude angle adjustment scheme for energy management is established by using the BP neural network approximation algorithm, which is applicable to the condition of depleted shutdown. According to reentry angle, engine thrust deviation and range, the scheme computes attitude adjustment angle under interference when the second stage rocket engine ignites for 10 s, which ensures the accuracy of the energy consumption and provides a precondition for close-loop guidance. The validity and feasibility of the model are demonstrated by simulation.
Keywords:ordnance science and technology  depleted shutdown  BP neural network  energy management  close-loop guidance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号