首页 | 本学科首页   官方微博 | 高级检索  
     


Directed collagen patterning on gold-coated silicon substrates via micro-contact printing
Authors:Margo R. Monroe   Yuping Li   Shaun B. Ajinkya   Laurie B. Gower  Elliot P. Douglas  
Affiliation:aDepartment of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, FL 32611-6400, United States
Abstract:The ability to create biologically functional systems from non-biological materials has importance in the arena of tissue engineering and medical device implantation. Directing the immobilization of proteins to specified regions on a substrate has attracted a lot of attention as one potential approach. Functionalization of the surface of gold-coated silicon wafers was accomplished by micro-contact printing a hydrophilic (or hydrophobic) self-assembled monolayer (SAM) atop the gold coating using poly(dimethylsiloxane) (PDMS) stamps. Afterwards, the substrate was soaked in a solution of hydrophobic (or hydrophilic) surfactant molecules which filled in the un-stamped area. The intention was to use carbodiimide coupling to attach fluorescently labeled collagen to COOH-terminated (hydrophilic) regions of the substrate. However, even in the presence of the reagents for this reaction, the collagen preferred to assemble on the hydrophobic regions. The results suggest that micro-contact printing may provide a simple mechanism for patterning collagen onto surfaces simply using selective adsorption. This might be useful for examining directed cell interactions, or to enhance the biocompatibility of inorganic materials used as substrates in tissue engineering or devices that are to be implanted into the body.
Keywords:Collagen   Self-assembled monolayer   Surface assembly
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号