首页 | 本学科首页   官方微博 | 高级检索  
     


Amplitude-frequency characteristic of a nonlinear spin wave interferometer operating in a quasi-nonlinear regime
Authors:A. B. Ustinov  B. A. Kalinikos
Affiliation:(1) St. Petersburg State Electrotechnical University, St. Petersburg, Russia
Abstract:A thin-film nonlinear spin wave interferometer has been experimentally studied. The concept of a quasi-nonlinear operation regime is introduced for the first time and the boundaries of the quasi-nonlinear dynamic range of the interferometer are experimentally determined. It is shown that the nonlinear spin wave interferometer operating in the quasi-nonlinear regime can be characterized, like linear devices, by the amplitude-frequency characteristic (AFC). However, an increase in the signal power level within the quasi-nonlinear dynamic range at the input of the nonlinear interferometer leads, in contrast to the case of a linear device, to a frequency shift of the AFC. An analysis of the AFC shift indicates that a 180° change in the phase difference between the interfering signals at each separate frequency is achieved for the input power varied within the limits of the quasi-nonlinear dynamic range. This behavior shows the possibility of using the nonlinear interferometer for the processing of microwave signals without undesired distortion of the signal waveform.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号