首页 | 本学科首页   官方微博 | 高级检索  
     


On the role of activation mode in the plasma- and hot filaments-enhanced catalytic chemical vapour deposition of vertically aligned carbon nanotubes
Authors:CS Cojocaru
Affiliation:Groupe Surfaces and Interfaces, IPCMS, UMR 7504 CNRS, Bât 69, 23, rue du Loess, 67034 Strasbourg Cedex, France
Abstract:Catalytic chemical vapor deposition (CCVD) with different activation modes (thermal; hot filaments-enhanced; direct current plasma-enhanced and both hot filament and direct current plasma-enhanced) are achieved in order to grow vertically aligned carbon nanotubes (VA CNTs). By widely varying the power of the different activation sources of the gas (plasma, hot filaments, substrate heating) while keeping identical the substrate temperature (973 K) and the catalyst preparation, the results point out the important role of ions in the nucleation of carbon nanotubes (CNTs), as well as the etching behaviour of highly activated radicals such as H˙ in the selective growth of vertically aligned films of CNTs. Moreover, it is demonstrated that, within the deposition conditions (temperature, pressure, flow rate) used in this study, oriented carbon nanotubes can be grown only when both ions, mainly generated by the gas discharge plasma, and highly reactive radicals, mainly formed by the hot filaments, are produced in the gas phase. We propose that highly energetic ions are needed to nucleate the carbon nanotubes by increasing the carbon concentration gradient whereas the highly reactive radicals allow the selective growth of vertically aligned CNTs by preventing carbon deposition on the whole surface through chemical etching of edge carbons in graphene sheets.
Keywords:Carbon nanotubes  Carbon nanoparticles  Catalytically grown carbon  Chemical vapour deposition  Transmission electron microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号