首页 | 本学科首页   官方微博 | 高级检索  
     


Ca2+-ATPase Molecules as a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum
Authors:Jun Nakamura  Yuusuke Maruyama  Genichi Tajima  Yuto Komeiji  Makiko Suwa  Chikara Sato
Affiliation:1.Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; (Y.M.); (Y.K.);2.Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan;3.Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5258, Japan;
Abstract:The Ca2+-transport ATPase of sarcoplasmic reticulum (SR) is an integral, transmembrane protein. It sequesters cytoplasmic calcium ions released from SR during muscle contraction, and causes muscle relaxation. Based on negative staining and transmission electron microscopy of SR vesicles isolated from rabbit skeletal muscle, we propose that the ATPase molecules might also be a calcium-sensitive membrane-endoskeleton. Under conditions when the ATPase molecules scarcely transport Ca2+, i.e., in the presence of ATP and ≤ 0.9 nM Ca2+, some of the ATPase particles on the SR vesicle surface gathered to form tetramers. The tetramers crystallized into a cylindrical helical array in some vesicles and probably resulted in the elongated protrusion that extended from some round SRs. As the Ca2+ concentration increased to 0.2 µM, i.e., under conditions when the transporter molecules fully carry out their activities, the ATPase crystal arrays disappeared, but the SR protrusions remained. In the absence of ATP, almost all of the SR vesicles were round and no crystal arrays were evident, independent of the calcium concentration. This suggests that ATP induced crystallization at low Ca2+ concentrations. From the observed morphological changes, the role of the proposed ATPase membrane-endoskeleton is discussed in the context of calcium regulation during muscle contraction.
Keywords:ryanodine receptor  Ca2+-ATPase  two-dimensional crystallization  ATP  calcium  membrane endoskeleton  transmission electron microscopy  cell morphology  cell dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号