基于情景感知与移动数据挖掘的行人轨迹预测方法 |
| |
作者姓名: | 谢添丞 乔少杰 张桃 吴凌淳 冉黎琼 于泳 李江敏 彭钰寒 薛骐 |
| |
作者单位: | 1.成都信息工程大学软件工程学院610225;2.宜宾学院人工智能与大数据学部644000; |
| |
基金项目: | 国家自然科学基金(62272066,61962006);四川省科技计划(2021JDJQ0021,2022YFG0186,2022NSFSC0511,2023YFG0027,2022YFG0325,2021YFG0029);教育部人文社会科学研究规划基金(22YJAZH088);宜宾市引进高层次人才项目(2022YG02);成都市“揭榜挂帅”科技项目(2022-JB00-00002-GX,2021-JB00-00025-GX);成都市重大科技创新项目(2021-YF08-00156-GX);中国电子科技集团公司第五十四研究所高校合作课题(SKX212010057);四川省教育厅人文社科重点研究基地四川网络文化研究中心资助科研项目(WLWH22-1);成都信息工程大学科技创新能力提升计划资助(KYTD202222);成都海关科研项目(2022CK008)。 |
| |
摘 要: | 移动数据挖掘是智能交通领域中各项应用的研究基础,对于理解复杂的人类行为模式和改善城市规划、交通和公共安全有着巨大的潜力。行人轨迹预测立足于移动数据挖掘,从中发现行人的移动规律,致力于在智能机器人、自动驾驶、智慧旅游等许多现代产业中发挥重要作用。考虑到传统的行人轨迹预测模型仅关注时空数据,没有充分考虑人与环境、人与人之间的相互作用以及情景信息,提出了一种基于空间社会力图神经网络(Spatial Social Force Graph Neural Network,SSF-GNN)的行人轨迹预测模型。SSF-GNN可以处理行人的历史轨迹,并从不同场景中提取特征。利用社会力理论量化了行人的互动和情景感知信息。SSF-GNN融合了行人的社会影响和隐藏状态,可以准确预测连续轨迹点。在两个经典数据集(ETH和UCY)上进行了大量的实验,结果表明SSF-GNN的性能优于当前主流算法。平均位移误差(Average Displacement Error,ADE)相较于对比方法的平均值减小了25.6%,最终位移误差(Final Displacement Error,FDE)减小了15.4%。预测行人在未来3.2 s的轨迹点时,现有对比方法的平均准确率为48.6%,SSF-GNN的准确率显著优于最先进的模型,达到67.7%。
|
关 键 词: | 移动数据挖掘 情景感知 轨迹预测 社会力理论 |
本文献已被 维普 等数据库收录! |
|