首页 | 本学科首页   官方微博 | 高级检索  
     

车辆路径问题的轻鲁棒优化模型与算法
引用本文:孙亮,潘全科,邹温强,王亚敏. 车辆路径问题的轻鲁棒优化模型与算法[J]. 控制理论与应用, 2021, 38(2): 206-212
作者姓名:孙亮  潘全科  邹温强  王亚敏
作者单位:上海大学机电工程与自动化学院,上海200072;山东理工大学交通与车辆工程学院,山东淄博255049;上海大学机电工程与自动化学院,上海200072;南京审计大学信息工程学院,江苏南京211815
基金项目:国家自然科学基金项目(61973203, 51575212)资助.
摘    要:针对不确定旅行时间下的车辆路径问题,以总变动成本最小为优化目标,建立了一种轻鲁棒优化模型,提出了一种针对问题特征的超启发式粒子群算法.在算法中,利用基于图论中深度优先搜索的初始化策略加快算法的早期收敛速度,引入基于均衡策略的启发式规则变换方式来提高算法的寻优能力,重新设计的粒子更新公式确保生成低层构造算法的有效性.实验...

关 键 词:鲁棒优化  超启发式算法  车辆路径问题  粒子群算法
收稿时间:2019-11-20
修稿时间:2020-08-19

Vehicle routing problem: light-robust-optimization model and algorithm
SUN Liang,PAN Quan-ke,ZOU Wen-qiang and WANG Ya-min. Vehicle routing problem: light-robust-optimization model and algorithm[J]. Control Theory & Applications, 2021, 38(2): 206-212
Authors:SUN Liang  PAN Quan-ke  ZOU Wen-qiang  WANG Ya-min
Affiliation:Shanghai University,Shanghai University,Shanghai University,Nanjing audit university
Abstract:A light-robust-optimization model is proposed for a vehicle routing problem with uncertain travel times(VRP-UT)with the objective of minimizing total variable cost.A hyper particle swarm optimization(HPSO)including problem-specific knowledge is proposed to solve the model.The proposed HPSO algorithm uses an initialized strategy based on deep first search in graph theory to accelerate the convergent speed at the early stage,and adopts two novel updating rules to generate efficient constructive algorithms,as well as employs some search algorithms based on balance strategy to enhance the optimization capability.Experimental results show that HPSO is an efficient algorithm to solve VRP-UT.
Keywords:robust optimization   hyper-heuristics   vehicle routing problem   particle swarm optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号