首页 | 本学科首页   官方微博 | 高级检索  
     

结合高效通道注意模块的残差网络骨龄评估
引用本文:唐志豪,刘利军,冯旭鹏,黄青松. 结合高效通道注意模块的残差网络骨龄评估[J]. 光电子.激光, 2021, 32(3): 331-338
作者姓名:唐志豪  刘利军  冯旭鹏  黄青松
作者单位:昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学教育技术与网络中心,云南昆明650500;昆明理工大学信息工程与自动化学院,云南昆明650500;昆明理工大学云南省计算机技术应用重点实验室,昆明650500
基金项目:面向大规模数据集的医学图像-文本跨模态检索关键技术研究(81860318)和面向移动医疗的医学影像精准响应方法研究(81560296)资助项目 (1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2.昆明理工大学 教育技术与网络中心,云南 昆明 650500; 3.昆明理工大学 云南省计算机技术应用重点实验室,昆明 650500)
摘    要:本文针对现有骨龄评估数据集数据规模小,样本分布不均匀以及现有方法评估准确度较低的问题,提出了一种新的结合高效通道注意模块的残差网络骨龄评估模型.通过结合深度残差网络和高效通道注意模块来提高卷积效率,并改进损失函数,缓解样本分布不均匀问题的影响;然后运用迁移学习的方法微调训练骨龄评估模型,提高模型训练效率;最后引入随机深...

关 键 词:骨龄评估  残差网络  高效通道注意模块  随机深度算法  损失函数
收稿时间:2020-10-26

Bone age assessment based on residual network combined with efficiency channel a ttention module
TANG Zhi-hao,LIU Li-jun,FENG Xu-peng and HUANG Qing-so ng. Bone age assessment based on residual network combined with efficiency channel a ttention module[J]. Journal of Optoelectronics·laser, 2021, 32(3): 331-338
Authors:TANG Zhi-hao  LIU Li-jun  FENG Xu-peng  HUANG Qing-so ng
Affiliation:Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Kunming 650500,China,Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Kunming 650500,China,Educational technology and Networ k Center,Kunming University of Science and Technology,Kunming 650500,China and Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Kunming 650500,China ;Yunnan Provincial Key Laboratory of Computer Technology Applications Kunming University of Science and Technology,Kunming 650500,China
Abstract:In this paper,a new residual network bone age assessment model combin ed with high-efficiency channel attention module was proposed to address the pr o blems of small data size,uneven sample distribution and low accuracy of existin g methods for bone age assessment.Firstly,the deep residual network is selecte d as the basic convolutional neural network model,the convolution efficiency is improved by combining the high-efficiency channel attention module,and the lo s s function is improved to alleviate the influence of the uneven distribution of samples.Then,the model in this paper is pre-trained on the ImageNet data set t o obtain the basic feature expression of the image.Finally,the open data set w as fine-tuned with the random depth algorithm,and the accuracy of bone age ass e ssment was obtained by cross validation.The results showed that the mean absolu te error of this method on RSNA and DHA data sets was 4.69months and 5.98month s,respectively.When the tolerance was 12months,the accuracy of bone age asse ssment was 98.36% and 94.88%.This indicates that this paper can significantly i mprove the accuracy of bone age assessment,alleviate the impact of small data s ize and uneven data distribution to a certain extent,and restrain overfitting w hile improving network learning ability.
Keywords:bone age assessment   residual network   efficient channel attention module   Rand om depth algorithm   loss function
本文献已被 万方数据 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号