首页 | 本学科首页   官方微博 | 高级检索  
     

基于分解协调方法的光储系统配置—运行协同优化
引用本文:张雨曼,刘学智,兰 琛. 基于分解协调方法的光储系统配置—运行协同优化[J]. 电力需求侧管理, 2021, 23(2): 29-36. DOI: 10.3969/j.issn.1009-1831.2021.02.006
作者姓名:张雨曼  刘学智  兰 琛
作者单位:上海交通大学电子信息与电气工程学院,上海 200240
基金项目:国家重点研发计划(2018YFB0905000)
摘    要:以光伏-储能电池系统为研究对象,构建光储系统的配置-运行优化分解协调模型.首先,将考虑储能投资成本与光储系统运行成本在内的综合费用作为目标函数,利用Benders分解方法将模型分解为规划配置主问题和运行调度子问题,然后,通过分解协调优化得到储能电池的最优配置方案与系统的优化运行策略,通过设定光伏消纳率、自给率、内部收益率、动态投资回收期等一系列指标,对模型进行评价.此外,实现了 Benders分解法收敛过程和Bender割集累积过程的可视化,直观展现出容量配置与优化运行的交互作用.基于此,进一步利用K-means聚类分析算法建立了年光伏出力模型,求解长时间尺度上储能电池的最优配置,探讨了分解协调优化模型在中长期尺度下求解的可行性.

关 键 词:光伏-储能系统  容量配置  运行优化  Benders分解协调方法  聚类分析
收稿时间:2020-12-11
修稿时间:2021-01-23

Collaborative optimization of photovoltaic-battery system sizing and operation based on decomposition-coordination method
ZHANG Yuman,LIU Xuezhi,LAN Chen. Collaborative optimization of photovoltaic-battery system sizing and operation based on decomposition-coordination method[J]. Power Demand Side Management, 2021, 23(2): 29-36. DOI: 10.3969/j.issn.1009-1831.2021.02.006
Authors:ZHANG Yuman  LIU Xuezhi  LAN Chen
Affiliation:School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Taking photovoltaic - battery system as a research object, the sizing and operation optimization model of the photovoltaic-battery system based on decomposition-coordination method is constructed. Firstly, taking the comprehensive cost including the energy storage investment cost and the operating cost of the optical storage system as the objective function, the Benders decomposition method is used to decompose the model into the main problem of planning and configuration and the sub -problem of operation scheduling. Then the capacity investment cost of energy storage and system operation cost are divided as the objective function of the main problem and sub-problem, the optimal configuration plan of the energy storage battery and the optimal operation strategy of the system are obtained through decomposition, coordination and optimization. At the same time, set a series of indicators such as the photovoltaic consumption rate, self-sufficiency rate, internal rate of return, and dynamic investment recovery period to evaluate the model. In addition, the visualization of the accumulation process of Bender cut sets is realized, and visually the convergence process of the Benders decomposition method is showed. Based on this, the K- means cluster analysis algorithm is used to establish an annual pho tovoltaic output model, the optimal configuration of energy storage batteries on a long-term scale is solved, and the feasibility of solving the decomposition and coordination optimization model on the medium and long-term scale is explored.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力需求侧管理》浏览原始摘要信息
点击此处可从《电力需求侧管理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号