首页 | 本学科首页   官方微博 | 高级检索  
     

基于因子分析和Elman网络的舆情关键词热度预测
引用本文:肖光华,王清莲. 基于因子分析和Elman网络的舆情关键词热度预测[J]. 计算机系统应用, 2021, 30(3): 243-249. DOI: 10.15888/j.cnki.csa.007811
作者姓名:肖光华  王清莲
作者单位:江苏城乡建设职业学院设备工程学院,常州 213147;河海大学计算机与信息工程学院,南京 210098;常州开放大学终身教育研究中心,常州 213001
基金项目:全国教育信息技术研究重点课题(183220001)
摘    要:从宏观角度研究基于关键词的网络舆情热度有助于相关机构把握目标群体的整体舆情动态,从而实现精准施策,提升舆论引导水平.本文以新浪微博数据为例,采用因子分析方法(Factor Analysis,FA),挖掘舆情热度内在影响因素,并通过改进Elman网络结构,利用遗传算法(Genetic Algorithm,GA)优化初始参...

关 键 词:因子分析  Elman  遗传算法  网络舆情  关键词热度
收稿时间:2020-07-09
修稿时间:2020-08-11

Prediction on Keywords Popularity of Public Opinion Based on Factor Analysis and Elman Network
XIAO Guang-Hu,WANG Qing-Lian. Prediction on Keywords Popularity of Public Opinion Based on Factor Analysis and Elman Network[J]. Computer Systems& Applications, 2021, 30(3): 243-249. DOI: 10.15888/j.cnki.csa.007811
Authors:XIAO Guang-Hu  WANG Qing-Lian
Affiliation:Department of Equipment Engineering, Jiangsu Urban and Rural Construction College, Changzhou 213147, China;College of Computer and Information Engineering, Hohai University, Nanjing 210098, China; Lifelong Education Research Center, Changzhou Open University, Changzhou 213001, China
Abstract:It is helpful for institutions to master the whole trends of target group that research on keywords popularity of network public opinions from a macroscopic perspective, precisely formulating corresponding strategies to enhance the level of opinion guidance. With Sina Weibo data set as an example, Factor Analysis (FA) is used to mine the internal factors of public opinions; a model that analyzes and predicts the keyword popularity of network public opinions is created through the initial parameters optimized by Genetic Algorithm (GA) and Elman network structure. The results show that predictions made by our method is more precise than those of original data sets and standard Elman network. Thus, it can be applied to providing reference for decision making.
Keywords:factor analysis  Elman  genetic algorithm  network public opinion  keyword popularity
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号