首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯混合模型聚类的风电场短期功率预测方法
引用本文:王一妹,刘辉,宋鹏,胡泽春,吴林林. 基于高斯混合模型聚类的风电场短期功率预测方法[J]. 电力系统自动化, 2021, 45(7): 37-43. DOI: 10.7500/AEPS20200616005
作者姓名:王一妹  刘辉  宋鹏  胡泽春  吴林林
作者单位:国网冀北电力有限公司电力科学研究院,北京市 100045;风光储并网运行技术国家电网公司重点实验室,北京市 100045;清华大学电机工程与应用电子技术系,北京市 100084;国网冀北电力有限公司电力科学研究院,北京市 100045;风光储并网运行技术国家电网公司重点实验室,北京市 100045;清华大学电机工程与应用电子技术系,北京市 100084
基金项目:国家重点研发计划资助项目(2016YFB0900500)。
摘    要:对任意来流条件下的风电场发电功率进行准确预测,是提高电网对风电接纳能力的有效措施.针对大型风电场的功率预测采用单点位风速外推预测代表性差的局限,提出基于高斯混合模型(GMM)聚类的风电场短期功率预测方法.方法结合数据分布特征,利用GMM聚类将大型风电场划分为若干机组群,借助贝叶斯信息准则指标评价,获得风电场内最优机组分...

关 键 词:风电机组  高斯混合模型聚类  合理性评价  功率预测
收稿时间:2020-06-16
修稿时间:2020-11-12

Short-term Power Forecasting Method of Wind Farm Based on Gaussian Mixture Model Clustering
WANG Yimei,LIU Hui,SONG Peng,HU Zechun,WU Linlin. Short-term Power Forecasting Method of Wind Farm Based on Gaussian Mixture Model Clustering[J]. Automation of Electric Power Systems, 2021, 45(7): 37-43. DOI: 10.7500/AEPS20200616005
Authors:WANG Yimei  LIU Hui  SONG Peng  HU Zechun  WU Linlin
Affiliation:1.Electric Power Research Institute of State Grid Jibei Electric Power Co., Ltd., Beijing 100045, China;2.Grid-connected Operation Technology for Wind-Solar-Storage Hybrid System State Grid Corporation Key Laboratory,Beijing 100045, China;3.Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Abstract:Accurate forecasting of wind farm power under arbitrary inflow conditions is an effective way to improve the ability of the power grid to accept wind power. Aiming at the limitation of poor representativeness of single-point wind speed extrapolation for power forecasting of large-scale wind farms, a short-term power forecasting method of wind farm based on Gaussian mixture model (GMM) clustering is proposed. The method combines the characteristics of data distribution, uses GMM clustering to divide large-scale wind farms into several unit groups, and obtains the optimal unit grouping scheme in the wind farm based on the index evaluation of Bayesian information criterion. The actual example verifies that the established GMM clustering model greatly improves the accuracy of ungrouped wind power forecasting models based on hourly, monthly, annual and other time scales. Compared with widely used methods such as k-means clustering and hierarchical agglomerative clustering, the GMM clustering method shows significant advantages in grouped power forecasting, which provides technical support and basis for the optimization of short-term power forecasting models for large-scale wind farms and the improvement of the operation economy.
Keywords:wind turbine  Gaussian mixture model (GMM) clustering  rationality evaluation  power forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号