首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波神经网络的水文时间序列预测
引用本文:朱跃龙,李士进,范青松,万定生. 基于小波神经网络的水文时间序列预测[J]. 山东大学学报(工学版), 2011, 41(4): 119-124
作者姓名:朱跃龙  李士进  范青松  万定生
作者单位:河海大学计算机与信息学院, 江苏 南京 210098
基金项目:国家自然科学基金资助项目(51079040);“十一五”国家科技支撑计划重大项目(2006BAB04A13);水利部948项目(201016)
摘    要:复杂时间序列预测是时间序列分析的主要研究内容之一,已成为一个具有重要理论和实际应用价值的热点研究领域。基于小波和神经网络组合模型,提出一种多因子小波预测模型以提高水文时间序列的预测精度。并根据不同小波函数对水文时间序列数据的适应性,提出了一种基于加权相关系数的小波函数选择准则。以国家重要水文站淮河王家坝站汛期的日流量时间序列预测为例,对各种常用小波函数进行了实验。结果发现选择得到的Haar小波和B3 spline小波函数预测精度较高,从而验证了小波函数选取准则的有效性;通过和传统单序列小波神经网络模型比较,发现提出的多因子小波神经网络模型的预测合格率在不同预见期均提高了10%以上,并且对洪水高流量方向预测合格率提高了15%。

关 键 词:时间序列预测  小波神经网络  小波选择  
收稿时间:2011-02-16

Wavelet-neural network model based complex hydrological time series prediction
ZHU Yue-long,LI Shi-jin,FAN Qing-song,WAN Ding-sheng. Wavelet-neural network model based complex hydrological time series prediction[J]. Journal of Shandong University of Technology, 2011, 41(4): 119-124
Authors:ZHU Yue-long  LI Shi-jin  FAN Qing-song  WAN Ding-sheng
Affiliation:School of Computer & Information Engineering, Hohai University, Nanjing 210098,   China
Abstract:Time series prediction is one of the main research topics in time series analysis, which is of great importance both in theoretical and application aspects. To improve the performance of the wavelet-neural network model on complex time series, a novel multi-factor prediction model is proposed. According to the adaptability of different wavelet function to hydrological time series, a new criterion for the selection of different wavelet functions is also put forward, which is based on weighted correlation coefficients. Lastly, the newly proposed method has been tested on predicting the daily flow of WANGJIABA station, which is a very important observation site on HUAIHE river. It is found that the chosen Haar wavelet and B3 spline wavelet can produce higher prediction accuracy, which validates the effectiveness of the selecting principle of wavelet function. By comparing with traditional wavelet neural network for single time series, at least 10% improvement has been observed for different predicting periods, and 15% improvement in forecasting the high flow direction during the disastrous flood period. All the experimental results have shown that the proposed multi-factor prediction model is effective for complex hydrological time series prediction.
Keywords:Time series prediction  wavelet neural network  wavelet selection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号