首页 | 本学科首页   官方微博 | 高级检索  
     

基于Q强化学习的综合能源服务商现货市场申报策略研究
引用本文:郝旭东,孙伟,程定一,张国强,匡洪辉. 基于Q强化学习的综合能源服务商现货市场申报策略研究[J]. 电力建设, 2020, 41(9): 132-138. DOI: 10.12204/j.issn.1000-7229.2020.09.015
作者姓名:郝旭东  孙伟  程定一  张国强  匡洪辉
作者单位:1.国网山东省电力公司电力科学研究院,济南市 2500022.山东省能源局,济南市 2500143.山东电力调度控制中心,济南市 2500014.北京清大科越股份有限公司,北京市100084
摘    要:随着综合能源系统建设和电力市场改革推进,综合能源服务商有望成为新的市场交易成员。为解决申报阶段有限的决策参考信息制约申报策略制定的问题,文章提出了一种基于Q强化学习的综合能源服务商现货市场申报策略,以提升申报策略的理想度。该方法的主要特点在于充分利用庞大的历史运行信息,通过人工智能算法训练申报策略智能体,建立综合能源服务商所掌握的有限参考信息与最优申报策略之间的内在关系。智能体以市场公开信息、社会公共信息及服务商私有信息为环境变量,能够实现申报策略的自动生成和智能改进。最后,基于某省电网实际数据构造算例表明,该方法能较好地拟合合作博弈下的申报策略,具有收敛速度快、理想度高、计算效率高等特点,更符合综合能源服务商决策需求。

关 键 词:综合能源服务商  现货市场  Q强化学习  申报策略
收稿时间:2020-04-29

A Novel Declaration Strategy for Integrated Energy Servicer Based on Q-Learning Algorithm in Power Spot Market
HAO Xudong,SUN Wei,CHENG Dingyi,ZHANG Guoqiang,KUANG Honghui. A Novel Declaration Strategy for Integrated Energy Servicer Based on Q-Learning Algorithm in Power Spot Market[J]. Electric Power Construction, 2020, 41(9): 132-138. DOI: 10.12204/j.issn.1000-7229.2020.09.015
Authors:HAO Xudong  SUN Wei  CHENG Dingyi  ZHANG Guoqiang  KUANG Honghui
Affiliation:1. State Grid Shandong Electric Power Research Institute, Jinan 250002, China2. Energy Administration of Shandong Province, Jinan 250014, China3. Shandong Electric Power Dispatching and Control Center, Jinan 250001, China4. Beijing QU Creative Technology Co., Ltd., Beijing 100084, China
Abstract:With the development of integrated energy system and power market reform, integrated energy servicer is expected to become a new market member in power market transaction. In order to solve the problem that the limited reference information in the declaration stage restricts the formulation of the declaration strategy, a declaration strategy based on Q-learning for integrated energy servicer is proposed to improve the ideal degree of the declaration strategy. The core idea of the proposed strategy is to make full use of the huge historical operation information and train the declaration strategy agent by artificial intelligence algorithms to establish the inherent relationship between the limited reference information grasped by integrated energy servicer during the market bidding process and its optimal declaration strategy. The declaration agent can realize automatic generation and intelligent improvement of declaration policies, which takes energy market public information, social public information and enterprise private information as environment variables. Finally, a case study based on the actual data of a provincial power grid shows that the proposed method can better match the declaration strategy under the cooperative game and has the characteristics of fast convergence, high ideal degree and high computational efficiency, which is more suitable for the actual needs of integrated energy servicer.
Keywords:integrated energy servicer   power spot market   Q-learning algorithm   declaration strategy
本文献已被 CNKI 等数据库收录!
点击此处可从《电力建设》浏览原始摘要信息
点击此处可从《电力建设》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号