首页 | 本学科首页   官方微博 | 高级检索  
     

不同冷却条件下Cu60Co30Cr10合金的快速凝固(英文)
引用本文:郭晋波,曹崇德,弓素莲,宋瑞波,白晓军,王建元,郑建邦,文喜星,孙占波.不同冷却条件下Cu60Co30Cr10合金的快速凝固(英文)[J].中国有色金属学会会刊,2013,23(3):731-734.
作者姓名:郭晋波  曹崇德  弓素莲  宋瑞波  白晓军  王建元  郑建邦  文喜星  孙占波
作者单位:西北工业大学应用物理系空间应用物理与化学教育部重点实验室;西安交通大学物质非平衡合成与调控教育部重点实验室
基金项目:Projects(51171152,50871088) supported by the National Natural Science Foundation of China;Project(20126102110048) supported by Doctoral Fund of Ministry of Education of China;Project(SKLSP201202) supported by Foundation of State Key Laboratory of Solidification,China;Project(2012JC2-02) supported by Natural Science Basic Research Plan in Shaanxi Province,China;Project (JC201268) supported by the NPU Foundation for Fundamental Research,China
摘    要:利用电磁悬浮和快淬实验研究Cu60Co30Cr10合金在亚稳不混溶区的液相分离和快速凝固特征。结果表明,合金的显微组织为富(Co,Cr)相分布在富Cu相基体中,且富(Co,Cr)相颗粒的形状和大小随着冷却速率的变化而有明显的区别。在悬浮凝固条件下冷却速率较低,富(Co,Cr)相较粗大,有明显的聚集粗化趋势,富(Cu)相中有大量富(Co,Cr)相枝晶。而在快淬凝固条件下富(Co,Cr)相明显细化,富(Cu)相中未发现富(Co,Cr)相枝晶形成,这可能与较高的冷却速率、较大的过冷度和较高的界面张力有关。

关 键 词:Cu-Co-Cr合金  快速凝固  亚稳液相分离  电磁悬浮  快淬
收稿时间:29 December 2011

Rapid solidification of Cu60Co30Cr10 alloy under different conditions
Jin-bo GUO,Chong-de CAO,Su-lian GONG,Rui-bo SONG,Xiao-jun BAI,Jian-yuan WANG,Jian-bang ZHEN G,Xi-xing WEN,Zhan-bo SUN.Rapid solidification of Cu60Co30Cr10 alloy under different conditions[J].Transactions of Nonferrous Metals Society of China,2013,23(3):731-734.
Authors:Jin-bo GUO  Chong-de CAO  Su-lian GONG  Rui-bo SONG  Xiao-jun BAI  Jian-yuan WANG  Jian-bang ZHEN G  Xi-xing WEN  Zhan-bo SUN
Affiliation:1.Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education,Department of Applied Physics,Northwestern Polytechnical University,Xi’an 710072,China;2.Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter,Ministry of Education,Xi’an Jiaotong University,Xi’an 710049,China
Abstract:Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching. It is found that the alloy generally has a microstructure consisting of a (Co,Cr)-rich phase embedded in a Cu-rich matrix, and the morphology and size of the (Co,Cr)-rich phase vary drastically with cooling rate. During the electromagnetic levitation solidification processing the cooling rate is lower, resulting in an obvious coalescence tendency of the (Co,Cr)-rich spheroids. The (Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates. In the splat quenched samples the (Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed. This is probably due to the higher cooling rate, undercooling and interface tension.
Keywords:Cu-Co-Cr alloy  rapid solidification  metastable liquid phase separation  electromagnetic levitation  splat-quenching
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号