首页 | 本学科首页   官方微博 | 高级检索  
     

基于Snake改进模型的心脏MR图像左心室分割方法
引用本文:朱敏,张炜雪,曲全民,李梦颖,高丽峰. 基于Snake改进模型的心脏MR图像左心室分割方法[J]. 四川大学学报(工程科学版), 2015, 47(2): 82-88
作者姓名:朱敏  张炜雪  曲全民  李梦颖  高丽峰
作者单位:四川大学,四川大学,东北大学,四川大学,四川大学
基金项目:室外场景的实时光照估计研究(No.61103137)
摘    要:提出一种基于Snake改进模型的心脏MR图像左心室分割方法。首先对梯度矢量流GVF模型进行改进,提出基于扩展邻域的S型函数梯度矢量流ENSGVF模型,该模型可获得更大的捕获域,并能解决深度凹陷及弱边界泄露的问题。然后将ENSGVF作为新的外力条件,构造ENSGVF Snake模型,用于内外膜分割。对于内膜分割,引入圆形约束项,消除由于图像灰度不均匀造成的局部极小问题。进而利用内膜分割结果构造新的外力场和约束,实现外膜的精确自动分割。实验结果表明,该算法能有效解决分割中存在的弱边界、图像灰度不均匀、乳突肌干扰等问题,提高了精确度。

关 键 词:心脏MR图像  Snake模型  ENSGVF模型  形状约束  图像分割
收稿时间:2014-05-20
修稿时间:2014-09-26

A Segmentation Method of Left Ventricle in Cardiac Magnetic Resonance Images Based on Improved Snake Model
Zhu Min,Zhang Weixue,Qu Quanmin,Li Mengying and Gao Lifeng. A Segmentation Method of Left Ventricle in Cardiac Magnetic Resonance Images Based on Improved Snake Model[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(2): 82-88
Authors:Zhu Min  Zhang Weixue  Qu Quanmin  Li Mengying  Gao Lifeng
Affiliation:Sichuan University,Sichuan University,Northeastern University,Sichuan University,Sichuan University
Abstract:A novel method for segmenting cardiac magnetic resonance images based on snake model is proposed. An external force called extended neighborhood sigmoid gradient vector flow ENSGVF is presented as the improvement of gradient vector flow (GVF) for snake which has a good performance on deep and narrow concavity convergence, capture range and weak edge preserving. In terms of the segmentation of endocardium, considering that the left ventricle is roughly a circle, a circle shape constraint is adopted on the basis of ENSGVF snake models, which can eliminate the unexpected local minimum caused by image inhomogeneity and papillary muscle. For the segmentation of epicardium, making full use of the segmentation result of endocardium, a new external force field and a new shape constraint are constructed to achieve automatic precise segmentation. The experimental results show that the proposed method can address the following challenges: (1) lake of edge inhomogeneity; (2) image inhomogeneity; (3) effect of papillary muscle. And it improves the rate of accuracy.
Keywords:cardiac magnetic resonance images   snake model   extended neighborhood sigmoid gradient vector flow   shape constraint   image segmentation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号