首页 | 本学科首页   官方微博 | 高级检索  
     


V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode
Authors:Joshi Kanchan A  Prouza Marek  Kum Maxwell  Wang Joseph  Tang Jason  Haddon Robert  Chen Wilfred  Mulchandani Ashok
Affiliation:Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.
Abstract:An enzyme electrode for the detection of V-type nerve agents, VX (O-ethyl-S-2-diisopropylaminoethyl methylphosphonothioate) and R-VX (O-isobutyl-S-2-diethylaminoethyl methylphosphonothioate), is proposed. The principle of the new biosensor is based on the enzyme-catalyzed hydrolysis of the nerve agents and amperometric detection of the thiol-containing hydrolysis products at carbon nanotube-modified screen-printed electrodes. Demeton-S was used as a nerve agent mimic. 2-(Diethylamino)ethanethiol (DEAET) and 2-(dimethylamino)ethanethiol (DMAET), the thiol-containing hydrolysis product and hydrolysis product mimic of R-VX and VX, respectively, were monitored by exploiting the electrocatalytic activity of carbon nanotubes (CNT). As low as 2 microM DMAET and 0.8 microM DEAET were detected selectively at a low applied potential of 0.5 V vs Ag/AgCl at a CNT-modified mediator-free amperometric electrode. Further, the large surface area and the hydrophobicity of CNT was used to immobilize organophosphorus hydrolase mutant with improved catalytic activity for the hydrolysis of the P-S bond of phosphothiolester neurotoxins including VX and R-VX nerve gases to develop a novel, mediator-free, membrane-free biosensor for V-type nerve agents. The applicability of the biosensor was demonstrated for direct, rapid, and selective detection of V-type nerve agents' mimic demeton-S. The selectivity of the sensor against interferences and application to spiked lake water samples was demonstrated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号