首页 | 本学科首页   官方微博 | 高级检索  
     


Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis
Authors:Shuang Chen  Yiting Hao  Wenguo Cui  Jiang Chang  Yue Zhou
Affiliation:1. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, People’s Republic of China
2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People’s Republic of China
Abstract:This paper explores the application potential of a biodegradable PLLA/chitosan electrospun composite membrane for guided periodontal tissue regeneration which in addition serves as a fibroblast barrier. Electrospinning was applied to fabricate the PLLA membrane and aminolysis method was applied to graft chitosan on its surface. The morphology of the PLLA/chitosan membrane was observed by SEM. The surface chemical composition was analyzed by XPS. The appearance of N 1s peak in XPS demonstrated the successful grafting of chitosan on the PLLA electrospin membrane. After the modification, the water contact angle decreased from 136.9 ± 2.18° to 117.0 ± 2.10°, representing an improved hydrophilicity of the membrane. The bioactivity of the membrane was analyzed by XPS after soaking in SBF. The deposits had a Ca/P ratio of 1.6, indicating the hydroxyapatite formation on PLLA/chitosan membrane. The degradation rate was determined by measuring mass loss after immersion in PBS at different time periods. Compared to pure PLLA electrospun membrane which was almost non-degradable, the degradation rate of PLLA/chitosan composite membrane was up to 20 % in 6 weeks while maintaining its basic architecture to keep supporting the regenerated tissue. Live–dead cell staining of MC3T3 E1 cells cultured on the surface of the membrane showed a good biocompatibility of the PLLA/chitosan membrane. Furthermore, fibroblast cell line NIH 3T3 was cultured on surface of the membrane for the evaluation of cell penetration. The result demonstrated that the membrane worked as a fibroblast barrier to minimize the unfavorable effect of fibroblasts on periodontal tissue regeneration. Therefore, this electrospun PLLA/chitosan composite membrane has more potential for clinical application compared to old generation regeneration membrane with both suitable degradation rate and non-fibroblast penetration property.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号