首页 | 本学科首页   官方微博 | 高级检索  
     


Instrumental requirements for high resolution imaging
Authors:K.-H. Herrmann
Abstract:The resolution of modern transmission electron microscopes reaches the physical limits imposed by lens aberrations and energy width. One of the many conditions to be fulfilled, the alignment of illuminating and imaging beam onto the coma-free objective axis, is particularly discussed here since axial coma cannot be detected by the usual resolution-checking methods. Space consumption of specimen stages prevents the full utilization of the magnetic saturation limit only in the 100 keV range. With higher energies, this handicap is obviated, and some additional advantages can be gained which promote material investigations at atomic resolution, and which are presently utilized in instrumental research projects. High resolution with biological specimens has up to now been unsuccessful because of radiation damage. Optimum utilization of all electrons scattered at the specimen must thus be given priority over optical resolution. Important instrumental requirements are minimum exposure beam control, imaging modes with high collection efficiency, and recording devices with high detection quantum efficiency connected on-line to image processors. A remarkable decrease in beam sensitivity of organic crystals, by more than one order, has been found by cooling the specimen down to 4 K which, by the use of superconducting lenses, can be combined with both ultra high vacuum and the stability requirements for high resolution. Yet up to now, such protection has not been achieved with He cryostates in conventional lenses, perhaps because a temperature increase even of only a few degree K is harmful. Purely magnetic imaging energy filters are about to be developed to a high optical quality but have been employed so far in only a few high resolution instruments. Such filters allow removal of the inelastic background and thus improvement of contrast of images of low-Z specimens, particularly in the dark field mode. Finally, some ‘non-conventional’ projects have made progress. Correction of spherical and chromatic aberration by multipole lenses offers a chance to improve remarkably the resolution in the 100 keV range, to extend the bandwidth of phase contrast transfer and to obtain highly resolved information about inelastic images when an energy filter is also applied. Electron holography provides possibly useful large area phase contrast, particularly if the electron energy is decreased, which may be of great benefit in investigations of unstained specimens.
Keywords:Instrumentation  electron microscopy  resolution  electron optics  low-dose techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号