首页 | 本学科首页   官方微博 | 高级检索  
     


Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins
Authors:Carini Marina  Aldini Giancarlo  Facino Roberto Maffei
Affiliation:Istituto Chimico Farmaceutico Tossicologico, Faculty of Pharmacy, University of Milan, Viale Abruzzi 42, 20131 Milan, Italy. marina.carini@unimi.it
Abstract:Despite the great technical advancement of mass spectrometry, this technique has contributed in a limited way to the discovery and quantitation of specific/precocious markers linked to free radical-mediated diseases. Unsaturated aldehydes generated by free radical-induced lipid peroxidation of polyunsaturated fatty acids, and in particular 4-hydroxy-trans-2 nonenal (HNE), are involved in the onset and progression of many pathologies such as cardiovascular (atherosclerosis, long-term complications of diabetes) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and cerebral ischemia). Most of the biological effects of HNE are attributed to the capacity of HNE to react with the nucleophilic sites of proteins and peptides (other than nucleic acids), to form covalently modified biomolecules that can disrupt important cellular functions and induce mutations. By considering the emerging role of HNE in several human diseases, an unequivocal analytical approach as mass spectrometry to detect/elucidate the structure of protein-HNE adducts in biological matrices is strictly needed not only to understand the reaction mechanism of HNE, but also to gain a deeper insight into the pathological role of HNE. This with the aim to provide intermediate diagnostic biomarkers for human diseases. This review sheds focus on the "state-of-the-art" of mass spectrometric applications in the field of HNE-protein adducts characterization, starting from the fundamental early studies and discussing the different MS-based approaches that can provide detailed information on the mechanistic aspects of HNE-protein interaction. In the last decade, the increases in the accessible mass ranges of modern instruments and advances in ionization methods have made possible a fundamental improvement in the analysis of protein-HNE adducts by mass spectrometry, and in particular by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass spectrometry. The recent developments and uses of combined analytical approaches to detect and characterize the type/site of interaction have been highlighted, and several other aspects, including sample preparation methodologies, structure elucidation, and data analysis have also been considered.
Keywords:4‐hydroxy‐trans‐2‐nonenal  peptide interaction  mass spectrometry  adduct characterization
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号