首页 | 本学科首页   官方微博 | 高级检索  
     

Multicut问题参数算法的改进
引用本文:刘运龙,王建新,陈建二. Multicut问题参数算法的改进[J]. 软件学报, 2010, 21(7): 1515-1523. DOI: 10.3724/SP.J.1001.2010.03625
作者姓名:刘运龙  王建新  陈建二
作者单位:中南大学,信息科学与工程学院,湖南,长沙,410083;湖南师范大学,继续教育学院,湖南,长沙,410013;中南大学,信息科学与工程学院,湖南,长沙,410083
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60433020, 60773111 (国家自然科学基金); the National Basic Research Program of China under Grant No.2008CB317107 (国家重点基础研究发展计划(973)); the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0683 (新世纪优秀人才支持计划)
摘    要:Multicut问题即在一个图上删除最少个数的顶点,使得预先给定的一组顶点对均不连通.该问题是NP难的.在深入分析问题结构特点的基础上,运用集合划分策略和相关问题的最新研究结果,对它提出了一种时间复杂度为O*的参数化算法,其中,l为给定的顶点对数目,k为需删除的顶点个数.该算法明显改进了当前时间复杂度为O*的最好算法.

关 键 词:Muliticut  Node Multicut  集合划分  极大恰当划分
收稿时间:2008-09-12
修稿时间:2009-03-31

Improved Parameterized Algorithm for the Multicut Problem
LIU Yun-Long,WANG Jian-Xin and CHEN Jian-Er. Improved Parameterized Algorithm for the Multicut Problem[J]. Journal of Software, 2010, 21(7): 1515-1523. DOI: 10.3724/SP.J.1001.2010.03625
Authors:LIU Yun-Long  WANG Jian-Xin  CHEN Jian-Er
Abstract:The Multicut problem is for a given graph and a given collection of terminal pairs to find a vertex set of minimum size such that the two terminals in any pair are not connected after deletion of this vertex set. This problem is NP-hard. Based on the deep analysis of its structural characteristics, employing the strategy of set partition and the improved results of another related problem, this paper proposes a parameterized algorithm of running time O* for the problem, in which l denotes the number of terminal pairs and k denotes the number of removed vertices. This algorithm significantly improves the previous one of running time O*.
Keywords:Muliticut   Node Multicut   set partition   maximal proper partition
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号