首页 | 本学科首页   官方微博 | 高级检索  
     

模糊联想记忆对训练模式对摄动的鲁棒性研究
引用本文:廖洲,徐蔚鸿,周辉. 模糊联想记忆对训练模式对摄动的鲁棒性研究[J]. 计算机工程与应用, 2011, 47(19): 211-213. DOI: 10.3778/j.issn.1002-8331.2011.19.059
作者姓名:廖洲  徐蔚鸿  周辉
作者单位:1.长沙理工大学 计算机与通信工程学院,长沙 410114 2.南京理工大学 计算机科学与技术学院,南京 210094
基金项目:国家教育部重点科研基金,湖南省教育厅重点科研基金
摘    要:基于模糊取大算子(V)和T-模的模糊合成,构建了一类模糊联想记忆网络(V-T FAM)。利用T-模的模糊蕴涵算子,给出了这类V-T FAM的学习算法。针对训练模式对小幅摄动可能对模糊神经网络的性能产生副作用,提出V-T FAM对训练模式对摄动的鲁棒性概念。理论研究表明,当T-模满足Lipschitz条件时,采用上述学习算法的V-T FAM对训练模式对摄动幅度,在系数为β的条件下全局拥有好的鲁棒性。最后用V-T FAM在图像联想方面的实验验证了理论结果。

关 键 词:模糊联想记忆网络  训练模式对  T-模  摄动  鲁棒性  
修稿时间: 

Robustness research of fuzzy associative memories with perturbation of training pattern pairs
LIAO Zhou,XU Weihong,ZHOU Hui. Robustness research of fuzzy associative memories with perturbation of training pattern pairs[J]. Computer Engineering and Applications, 2011, 47(19): 211-213. DOI: 10.3778/j.issn.1002-8331.2011.19.059
Authors:LIAO Zhou  XU Weihong  ZHOU Hui
Affiliation:1.College of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114,China 2.College of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094,China
Abstract:This paper sets up a class of fuzzy associative memories based on the fuzzy composition of max operation(V) and T-Norms,so be called V-T FAM(Fuzzy Associative Memory).With the fuzzy implication operator of T-Norms,a general learning algorithm is proposed for a class of such V-T FAMs.Since small perturbations of training pattern pairs may cause some disadvantages to performance of a fuzzy neural network,a new concept is established for the robustness of V-T FAMs to perturbations of training pattern pairs.The theoretical researches show that when T-Norms satisfy Lipschitz condition,V-T FAMs have good robustness under the condition of the perturbation factor of β of training pattern pairs by the proposed learning algorithm.Finally,the experiment with which the V-T FAM associated an image with another image is given to testify the theoretical results.
Keywords:fuzzy associative memories  training pattern pairs  T-Norms  perturbation  robustness
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号