首页 | 本学科首页   官方微博 | 高级检索  
     

应用二维EMD和独立成分分析的掌纹识别
引用本文:戴桂平,尚丽. 应用二维EMD和独立成分分析的掌纹识别[J]. 计算机工程与应用, 2011, 47(19): 182-185. DOI: 10.3778/j.issn.1002-8331.2011.19.051
作者姓名:戴桂平  尚丽
作者单位:苏州市职业大学 电子信息工程系,江苏 苏州 215104
基金项目:江苏省自然科学基金,河北省科学技术研究与发展计划项目
摘    要:提出一种基于二维经验模式分解(Two-dimensional Empirical Mode Decomposition,2-D EMD)和独立成分分析(Independent Comment Analysis,ICA)相结合的掌纹识别新方法。利用2-D EMD自适应的时频局域化多尺度和ICA II表征数据的高阶统计特性来提取掌纹特征。首先,对预处理过的掌纹图像进行2-D EMD分解得到多层本征模函数(Intrinsic Mode Function,IMF);其次,利用基于PCA(Principal Component Analysis)降维处理的FastICA II算法提取IMF子图像集的掌纹特征基向量;最后,设计实验测试(2-D EMD+ICA II)的识别性能。实验结果表明,该方法能更有效地提取掌纹特征,与传统的ICA II相比,具有重构图像信噪比好、识别率高等优点。

关 键 词:二维经验模式分解(2-DEMD)  独立成分分析(ICA)  主成分分析(PCA)  掌纹识别  
修稿时间: 

Approach for palm print recognition based on two-dimensional Empirical Mode Decomposition and ICA
DAI Guiping,SHANG Li. Approach for palm print recognition based on two-dimensional Empirical Mode Decomposition and ICA[J]. Computer Engineering and Applications, 2011, 47(19): 182-185. DOI: 10.3778/j.issn.1002-8331.2011.19.051
Authors:DAI Guiping  SHANG Li
Affiliation:Department of Electronic Information Engineering,Suzhou Vocational University,Suzhou,Jiangsu 215104,China
Abstract:A novel method based on Two-dimensional Empirical Mode Decomposition(2-D EMD) and Independent Comment Analysis(ICA) is proposed to solve palm print recognition.The adaptive time-frequency localization of 2-D EMD and higher-order statistical independency of ICA II are utilized to extract the palm print features.Firstly,the preprocessed palm print image is decomposed into some Intrinsic Mode Functions(IMFs) by 2-D EMD,and then the palm print feature subspaces of IMF subimages matrix are obtained by a fast fixed-point algorithm for ICA II(Fast ICA II),before which Principal Component Analysis(PCA) is used to decrease the dimensions of input images matrix.Finally,the recognition performance of the integrated method(2-D EMD+ICA II) is tested on the Hong Kong Polytechnic University palm print database.Experimental results show that,compared with ICA II,the proposed method not only can more effectively and accurately extract the palm print features,but also achieves superior Signal-noise-ratio(SNR)of the reconstructed image and higher recognition rate.
Keywords:two-dimensional empirical mode decomposition  independent comment analysis  principal component analysis  palm print recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号