首页 | 本学科首页   官方微博 | 高级检索  
     

一类具有非线性传染率和脉冲接种的SIV传染病模型
引用本文:朱慧,熊佐亮. 一类具有非线性传染率和脉冲接种的SIV传染病模型[J]. 南昌大学学报(工科版), 2007, 29(1): 58-61
作者姓名:朱慧  熊佐亮
作者单位:南昌大学,数学系,江西,南昌330031;淮阴工学院,计科系,江苏,淮安,223002;南昌大学,数学系,江西,南昌330031
摘    要:研究了一类具有脉冲预防接种且带有非线性传染率的SIV传染病模型,并考虑了人口总数变化,与总人口量有关的自然死亡率以及因病死亡率的因素,证明了无病周期解的存在性,得到了基本再生数.通过脉冲微分方程的F loquet理论得出无病周期解局部渐近稳定,并利用比较定理进一步推出无病周期解全局渐近稳定.

关 键 词:脉冲接种  SIV传染病模型  再生数  全局渐近稳定性
文章编号:1006-0456(2007)01-0058-04
收稿时间:2006-07-21
修稿时间:2006-07-21

An SIV Epidemic Model with Impulsive Vaccination and Nonlinear Incidence Rate
ZHU Hui,XIONG Zuo-liang. An SIV Epidemic Model with Impulsive Vaccination and Nonlinear Incidence Rate[J]. Journal of Nanchang University(Engineering & Technology Edition), 2007, 29(1): 58-61
Authors:ZHU Hui  XIONG Zuo-liang
Affiliation:1. Department of Mathematics, Nanchang University, Nanchang 330031, China; 2. Department of Computing Science, Huaiyin Institute of Technology ,Huaian 223002, China
Abstract:An SIV epidemic model with impulsive vaccination and nonlinear incidence rate is studied.Besides,a varying total population size,the natural death rate which is related to the total population size and the disease-related death rate are considered.The existence of the disease-free periodic solution is proved and the basic reproductive number of the model is defined.By using the Floquet theory of impulsive equation the locally asymptotic stability of the disease-free periodic solution is proved.And the globally asymptotic stability of the disease-free periodic solution is obtained by using the comparison theorem.
Keywords:impulsive vaccination  SIV epidemic model  reproductive number  globally asymptotic stability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号