首页 | 本学科首页   官方微博 | 高级检索  
     

基于本体和语义文法的上下文相关问答
引用本文:王东升,王石,王卫民,刘亮亮,符建辉. 基于本体和语义文法的上下文相关问答[J]. 中文信息学报, 2016, 30(2): 142-152
作者姓名:王东升  王石  王卫民  刘亮亮  符建辉
作者单位:1. 江苏科技大学 计算机科学与工程学院,江苏 镇江 212001;
2. 中国科学院 计算技术研究所,北京 100190;
3. 北京工业大学 国际WIC研究院,北京 100022
基金项目:国家自然科学基金(61203284,61173063);江苏科技大学博士科研启动基金;北京市博士后基金(2015ZZ-25);北京市朝阳区博士后基金(2015ZZ-11)
摘    要:在问答系统中,用户的提问通常不是孤立的,而是使用连续的多个相关的问题来获取信息,用户在与这样的系统进行交互时,才会感觉更自然。在已构建的非上下文相关问答系统的基础上,该文提出了一种可以处理上下文相关问题的方法并开发了系统OSG-IQAs。方法首先识别当前问题是否是一个从问题(follow-up),并判别其与前面问题的具体的相关类别,然后根据相关类别,利用话语结构中的信息对当前的follow-up问题进行重构,并提交到非上下文相关问答系统中。最后,将方法在两个不同规模的领域进行测试,并与相关系统或方法进行比较,测试结果表明,该方法具有较好的可扩展性。在总体测试中,该方法比基线系统获得了更好地效果,同时利用手工将所有上下文相关问题进行上下文消解,系统与此也进行了比较,并获得了相近的性能。

关 键 词:本体  语义文法  上下文  问答  

Interactive Question Answering Based on Ontology and Semantic Grammar
WANG Dongsheng,WANG Shi,WANG Weimin,LIU Liangliang,FU Jianhui. Interactive Question Answering Based on Ontology and Semantic Grammar[J]. Journal of Chinese Information Processing, 2016, 30(2): 142-152
Authors:WANG Dongsheng  WANG Shi  WANG Weimin  LIU Liangliang  FU Jianhui
Affiliation:1. School of Computer Science and Engineering, Jiangsu university of Science of Technology Zhenjiang, Jiangsu 212001,China;
2. Institute of Computing Technology ,Chinese Academy of Sciences,Beijing 100190,China;
3. International WIC Institute, Beijing University of Technology, Beijing 100022, China)
Abstract:In QA system, the user queries are usually not isolated, but correlated. This paper proposes an ontology and semantic grammar based method for interactive question answering, and we developes a QA system called OSG-IQAs based on an existing non-contextual question answering system. We first propose a discourse structure to maintain semantic information (i.e., the understanding result) of questions, and then use an approach to recognizing the specific type of relevancy between the previous question and follow-up question. We then propose an algorithm which fuses different contextual information (recorded in discourse structure) into the current, follow-up question according to the specific relevancy type. Lastly, the transformed question is resubmitted to the non-contextual question answering system. We finally evaluate the proposed method on two real contextual QA data sets from two areas of different scales. The results show that the proposed method has better scalability; we achieved an overall performance better than a baseline system and almost the same performance as another comparison system whose contextual phenomena are manually resolved.
Keywords:ontology  semantic grammar  interactive QA  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号